These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 16766616)

  • 1. A steady-state electrochemical model of vascular smooth muscle cells.
    Machingal MA; Ramanan SV
    Biophys J; 2006 Sep; 91(5):1648-62. PubMed ID: 16766616
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of arterial wall stress on vasomotion.
    Koenigsberger M; Sauser R; Bény JL; Meister JJ
    Biophys J; 2006 Sep; 91(5):1663-74. PubMed ID: 16751242
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Endurance exercise training restores atrophy-induced decreases of myogenic response and ionic currents in rat skeletal muscle artery.
    Yin MZ; Kim HJ; Suh EY; Zhang YH; Yoo HY; Kim SJ
    J Appl Physiol (1985); 2019 Jun; 126(6):1713-1724. PubMed ID: 30920885
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical control of cation channels in the myogenic response.
    Carlson BE; Beard DA
    Am J Physiol Heart Circ Physiol; 2011 Aug; 301(2):H331-43. PubMed ID: 21572020
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physiological roles of K+ channels in vascular smooth muscle cells.
    Ko EA; Han J; Jung ID; Park WS
    J Smooth Muscle Res; 2008 Apr; 44(2):65-81. PubMed ID: 18552454
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Swelling-activated cation channels mediate depolarization of rat cerebrovascular smooth muscle by hyposmolarity and intravascular pressure.
    Welsh DG; Nelson MT; Eckman DM; Brayden JE
    J Physiol; 2000 Aug; 527 Pt 1(Pt 1):139-48. PubMed ID: 10944177
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hypoxia-induced vascular smooth muscle relaxation: increased ATP-sensitive K+ efflux or decreased voltage-sensitive Ca2+ influx?
    Gauthier KM
    Am J Physiol Heart Circ Physiol; 2006 Jul; 291(1):H24-5. PubMed ID: 16565315
    [No Abstract]   [Full Text] [Related]  

  • 8. Role of Cav1.2 L-type Ca2+ channels in vascular tone: effects of nifedipine and Mg2+.
    Zhang J; Berra-Romani R; Sinnegger-Brauns MJ; Striessnig J; Blaustein MP; Matteson DR
    Am J Physiol Heart Circ Physiol; 2007 Jan; 292(1):H415-25. PubMed ID: 16980345
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of arterial diameter and wall [Ca2+] in cerebral arteries of rat by membrane potential and intravascular pressure.
    Knot HJ; Nelson MT
    J Physiol; 1998 Apr; 508 ( Pt 1)(Pt 1):199-209. PubMed ID: 9490839
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Smooth Muscle Ion Channels and Regulation of Vascular Tone in Resistance Arteries and Arterioles.
    Tykocki NR; Boerman EM; Jackson WF
    Compr Physiol; 2017 Mar; 7(2):485-581. PubMed ID: 28333380
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ionic mechanisms mediating the myogenic response in newborn porcine cerebral arteries.
    Ahmed A; Waters CM; Leffler CW; Jaggar JH
    Am J Physiol Heart Circ Physiol; 2004 Nov; 287(5):H2061-9. PubMed ID: 15284060
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intracellular acidification alters myogenic responsiveness and vasomotion of mouse middle cerebral arteries.
    Thomsen AB; Kim S; Aalbaek F; Aalkjaer C; Boedtkjer E
    J Cereb Blood Flow Metab; 2014 Jan; 34(1):161-8. PubMed ID: 24192638
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pituitary adenylate-cyclase-activating peptides relax human coronary arteries by activating K(ATP) and K(Ca) channels in smooth muscle cells.
    Bruch L; Bychkov R; Kästner A; Bülow T; Ried C; Gollasch M; Baumann G; Luft FC; Haller H
    J Vasc Res; 1997; 34(1):11-8. PubMed ID: 9075821
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NO hyperpolarizes pulmonary artery smooth muscle cells and decreases the intracellular Ca2+ concentration by activating voltage-gated K+ channels.
    Yuan XJ; Tod ML; Rubin LJ; Blaustein MP
    Proc Natl Acad Sci U S A; 1996 Sep; 93(19):10489-94. PubMed ID: 8816828
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanistic basis of differential conduction in skeletal muscle arteries.
    Tran CH; Vigmond EJ; Plane F; Welsh DG
    J Physiol; 2009 Mar; 587(Pt 6):1301-18. PubMed ID: 19171655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of cell calcium and contractility in mammalian arterial smooth muscle: the role of sodium-calcium exchange.
    Ashida T; Blaustein MP
    J Physiol; 1987 Nov; 392():617-35. PubMed ID: 2451733
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potassium Channels in Regulation of Vascular Smooth Muscle Contraction and Growth.
    Jackson WF
    Adv Pharmacol; 2017; 78():89-144. PubMed ID: 28212804
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ion channels as effectors of cyclic nucleotide pathways: Functional relevance for arterial tone regulation.
    Manoury B; Idres S; Leblais V; Fischmeister R
    Pharmacol Ther; 2020 May; 209():107499. PubMed ID: 32068004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of functional voltage-gated Na(+) channels in cultured human pulmonary artery smooth muscle cells.
    Platoshyn O; Remillard CV; Fantozzi I; Sison T; Yuan JX
    Pflugers Arch; 2005 Nov; 451(2):380-387. PubMed ID: 16052353
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Invited review: arteriolar smooth muscle mechanotransduction: Ca(2+) signaling pathways underlying myogenic reactivity.
    Hill MA; Zou H; Potocnik SJ; Meininger GA; Davis MJ
    J Appl Physiol (1985); 2001 Aug; 91(2):973-83. PubMed ID: 11457816
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.