BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 16766795)

  • 1. The absolute structural requirement for a proline in the P3'-position of Bowman-Birk protease inhibitors is surmounted in the minimized SFTI-1 scaffold.
    Daly NL; Chen YK; Foley FM; Bansal PS; Bharathi R; Clark RJ; Sommerhoff CP; Craik DJ
    J Biol Chem; 2006 Aug; 281(33):23668-75. PubMed ID: 16766795
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A conserved cis peptide bond is necessary for the activity of Bowman-Birk inhibitor protein.
    Brauer AB; Domingo GJ; Cooke RM; Matthews SJ; Leatherbarrow RJ
    Biochemistry; 2002 Aug; 41(34):10608-15. PubMed ID: 12186545
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzymatic cyclization of a potent bowman-birk protease inhibitor, sunflower trypsin inhibitor-1, and solution structure of an acyclic precursor peptide.
    Marx UC; Korsinczky ML; Schirra HJ; Jones A; Condie B; Otvos L; Craik DJ
    J Biol Chem; 2003 Jun; 278(24):21782-9. PubMed ID: 12621047
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disulfide bond mutagenesis and the structure and function of the head-to-tail macrocyclic trypsin inhibitor SFTI-1.
    Korsinczky ML; Clark RJ; Craik DJ
    Biochemistry; 2005 Feb; 44(4):1145-53. PubMed ID: 15667208
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-affinity cyclic peptide matriptase inhibitors.
    Quimbar P; Malik U; Sommerhoff CP; Kaas Q; Chan LY; Huang YH; Grundhuber M; Dunse K; Craik DJ; Anderson MA; Daly NL
    J Biol Chem; 2013 May; 288(19):13885-96. PubMed ID: 23548907
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solution structures by 1H NMR of the novel cyclic trypsin inhibitor SFTI-1 from sunflower seeds and an acyclic permutant.
    Korsinczky ML; Schirra HJ; Rosengren KJ; West J; Condie BA; Otvos L; Anderson MA; Craik DJ
    J Mol Biol; 2001 Aug; 311(3):579-91. PubMed ID: 11493011
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural features and molecular evolution of Bowman-Birk protease inhibitors and their potential application.
    Qi RF; Song ZW; Chi CW
    Acta Biochim Biophys Sin (Shanghai); 2005 May; 37(5):283-92. PubMed ID: 15880256
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The (1)H-NMR solution structure of the antitryptic core peptide of Bowman-Birk inhibitor proteins: a minimal canonical loop.
    Brauer AB; Kelly G; Matthews SJ; Leatherbarrow RJ
    J Biomol Struct Dyn; 2002 Aug; 20(1):59-70. PubMed ID: 12144352
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of serine proteinase inhibitors by combinatorial chemistry using trypsin inhibitor SFTI-1 as a starting structure.
    Zabłotna E; Jaśkiewicz A; Łegowska A; Miecznikowska H; Lesner A; Rolka K
    J Pept Sci; 2007 Nov; 13(11):749-55. PubMed ID: 17828796
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sunflower trypsin inhibitor-1.
    Korsinczky ML; Schirra HJ; Craik DJ
    Curr Protein Pept Sci; 2004 Oct; 5(5):351-64. PubMed ID: 15544530
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solution structure of a novel C2-symmetrical bifunctional bicyclic inhibitor based on SFTI-1.
    Jaulent AM; Brauer AB; Matthews SJ; Leatherbarrow RJ
    J Biomol NMR; 2005 Sep; 33(1):57-62. PubMed ID: 16222558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discovery, structural determination, and putative processing of the precursor protein that produces the cyclic trypsin inhibitor sunflower trypsin inhibitor 1.
    Mulvenna JP; Foley FM; Craik DJ
    J Biol Chem; 2005 Sep; 280(37):32245-53. PubMed ID: 16036912
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The structural basis of a conserved P2 threonine in canonical serine proteinase inhibitors.
    Brauer AB; Nievo M; McBride JD; Leatherbarrow RJ
    J Biomol Struct Dyn; 2003 Apr; 20(5):645-56. PubMed ID: 12643767
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Peptide mimics of the Bowman-Birk inhibitor reactive site loop.
    McBride JD; Watson EM; Brauer AB; Jaulent AM; Leatherbarrow RJ
    Biopolymers; 2002; 66(2):79-92. PubMed ID: 12325158
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering potent mesotrypsin inhibitors based on the plant-derived cyclic peptide, sunflower trypsin inhibitor-1.
    de Veer SJ; Li CY; Swedberg JE; Schroeder CI; Craik DJ
    Eur J Med Chem; 2018 Jul; 155():695-704. PubMed ID: 29936356
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Natural structural diversity within a conserved cyclic peptide scaffold.
    Elliott AG; Franke B; Armstrong DA; Craik DJ; Mylne JS; Rosengren KJ
    Amino Acids; 2017 Jan; 49(1):103-116. PubMed ID: 27695949
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biological significance of polymorphism in legume protease inhibitors from the Bowman-Birk family.
    Clementea A; Domoney C
    Curr Protein Pept Sci; 2006 Jun; 7(3):201-16. PubMed ID: 16787260
    [TBL] [Abstract][Full Text] [Related]  

  • 18. KLK4 Inhibition by Cyclic and Acyclic Peptides: Structural and Dynamical Insights into Standard-Mechanism Protease Inhibitors.
    Riley BT; Ilyichova O; de Veer SJ; Swedberg JE; Wilson E; Hoke DE; Harris JM; Buckle AM
    Biochemistry; 2019 May; 58(21):2524-2533. PubMed ID: 31058493
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design, synthesis and analysis of novel bicyclic and bifunctional protease inhibitors.
    Jaulent AM; Leatherbarrow RJ
    Protein Eng Des Sel; 2004 Sep; 17(9):681-7. PubMed ID: 15486024
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthetic peptide mimics of the Bowman-Birk inhibitor protein.
    McBride JD; Leatherbarrow RJ
    Curr Med Chem; 2001 Jul; 8(8):909-17. PubMed ID: 11375759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.