BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 16767168)

  • 1. Isolation and characterization of SSR sequences from the genome and TAC clones of common wheat using the PCR technique.
    Koike M; Kawaura K; Ogihara Y; Torada A
    Genome; 2006 May; 49(5):432-44. PubMed ID: 16767168
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SSR-based linkage map with new markers using an intraspecific population of common wheat.
    Torada A; Koike M; Mochida K; Ogihara Y
    Theor Appl Genet; 2006 Apr; 112(6):1042-51. PubMed ID: 16450184
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An integrated SSR and RFLP linkage map of Sorghum bicolor (L.) Moench.
    Bhattramakki D; Dong J; Chhabra AK; Hart GE
    Genome; 2000 Dec; 43(6):988-1002. PubMed ID: 11195353
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A 'Chinese Spring' wheat (Triticum aestivum L.) bacterial artificial chromosome library and its use in the isolation of SSR markers for targeted genome regions.
    Shen B; Wang DM; McIntyre CL; Liu CJ
    Theor Appl Genet; 2005 Nov; 111(8):1489-94. PubMed ID: 16187119
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of an efficient maintenance and screening system for large-insert genomic DNA libraries of hexaploid wheat in a transformation-competent artificial chromosome (TAC) vector.
    Liu YG; Nagaki K; Fujita M; Kawaura K; Uozumi M; Ogihara Y
    Plant J; 2000 Sep; 23(5):687-95. PubMed ID: 10972894
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Construction, characterization and screening of a transformation-competent artificial chromosome (TAC) library of wheat-Thinopyrum intermedium translocation line with resistance to barley yellow dwarf virus].
    Wang XP; Zhang ZY; Zhang QY; Liu YG; Xin ZY
    Yi Chuan Xue Bao; 2002; 29(8):712-8. PubMed ID: 12200863
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-Wide Analysis of Microsatellite Markers Based on Sequenced Database in Chinese Spring Wheat (Triticum aestivum L.).
    Han B; Wang C; Tang Z; Ren Y; Li Y; Zhang D; Dong Y; Zhao X
    PLoS One; 2015; 10(11):e0141540. PubMed ID: 26536014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. EST-derived SSR markers from defined regions of the wheat genome to identify Lophopyrum elongatum specific loci.
    Mullan DJ; Platteter A; Teakle NL; Appels R; Colmer TD; Anderson JM; Francki MG
    Genome; 2005 Oct; 48(5):811-22. PubMed ID: 16391687
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid development of PCR-based genome-specific repetitive DNA junction markers in wheat.
    Wanjugi H; Coleman-Derr D; Huo N; Kianian SF; Luo MC; Wu J; Anderson O; Gu YQ
    Genome; 2009 Jun; 52(6):576-87. PubMed ID: 19483776
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sequence-tagged microsatellite profiling (STMP): a rapid technique for developing SSR markers.
    Hayden MJ; Sharp PJ
    Nucleic Acids Res; 2001 Apr; 29(8):E43-3. PubMed ID: 11292857
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Screening for resistance gene candidate from a genomic TAC library of Triticum aestivum-Haynaldia villosa translocation line 6VS/6AL by pooled PCR].
    Qin GJ; Chen PD; Liu YG; Fang YD; Liu DJ
    Sheng Wu Gong Cheng Xue Bao; 2002 May; 18(3):313-7. PubMed ID: 12192864
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hemi-nested touchdown PCR combined with primer-template mismatch PCR for rapid isolation and sequencing of low molecular weight glutenin subunit gene family from a hexaploid wheat BAC library.
    Huang XQ; Cloutier S
    BMC Genet; 2007 May; 8():18. PubMed ID: 17480230
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.).
    Thiel T; Michalek W; Varshney RK; Graner A
    Theor Appl Genet; 2003 Feb; 106(3):411-22. PubMed ID: 12589540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development and characterization of microsatellite markers (SSR) in Sesamum (Sesamum indicum L.) species.
    Spandana B; Reddy VP; Prasanna GJ; Anuradha G; Sivaramakrishnan S
    Appl Biochem Biotechnol; 2012 Nov; 168(6):1594-607. PubMed ID: 22971833
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of simple sequence repeat markers from bacterial artificial chromosomes without subcloning.
    Qi X; Lindup S; Pittaway TS; Allouis S; Gale MD; Devos KM
    Biotechniques; 2001 Aug; 31(2):355, 358-62. PubMed ID: 11515373
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Development of Dasypyrum genome specific marker by using wheat microsatellites].
    Liu C; Yang ZJ; Feng J; Zhou JP; Chi SH; Ren ZL
    Yi Chuan; 2006 Dec; 28(12):1573-9. PubMed ID: 17138545
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study of simple sequence repeat (SSR) markers from wheat expressed sequence tags (ESTs).
    Nicot N; Chiquet V; Gandon B; Amilhat L; Legeai F; Leroy P; Bernard M; Sourdille P
    Theor Appl Genet; 2004 Aug; 109(4):800-5. PubMed ID: 15146317
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new approach to extending the wheat marker pool by anchored PCR amplification of compound SSRs.
    Hayden MJ; Stephenson P; Logojan AM; Khatkar D; Rogers C; Koebner RM; Snape JW; Sharp PJ
    Theor Appl Genet; 2004 Feb; 108(4):733-42. PubMed ID: 14598031
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular analyses of a repetitive DNA sequence in wheat (Triticum aestivum L.).
    Ueng PP; Hang A; Tsang H; Vega JM; Wang L; Burton CS; He FT; Liu B
    Genome; 2000 Jun; 43(3):556-63. PubMed ID: 10902721
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of repetitive DNA landscape in wheat homeologous group 4 chromosomes.
    Garbus I; Romero JR; Valarik M; Vanžurová H; Karafiátová M; Cáccamo M; Doležel J; Tranquilli G; Helguera M; Echenique V
    BMC Genomics; 2015 May; 16(1):375. PubMed ID: 25962417
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.