These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
85 related articles for article (PubMed ID: 16767741)
41. Interactions of lysozyme in guanidinium chloride solutions from static and dynamic light-scattering measurements. Liu W; Cellmer T; Keerl D; Prausnitz JM; Blanch HW Biotechnol Bioeng; 2005 May; 90(4):482-90. PubMed ID: 15778988 [TBL] [Abstract][Full Text] [Related]
42. Non-peptide entry inhibitors of HIV-1 that target the gp41 coiled coil pocket. Stewart KD; Huth JR; Ng TI; McDaniel K; Hutchinson RN; Stoll VS; Mendoza RR; Matayoshi ED; Carrick R; Mo H; Severin J; Walter K; Richardson PL; Barrett LW; Meadows R; Anderson S; Kohlbrenner W; Maring C; Kempf DJ; Molla A; Olejniczak ET Bioorg Med Chem Lett; 2010 Jan; 20(2):612-7. PubMed ID: 20004576 [TBL] [Abstract][Full Text] [Related]
43. Improved method for evaluating the dead volume and protein-protein interactions by self-interaction chromatography. Binabaji E; Rao S; Zydney AL Anal Chem; 2013 Oct; 85(19):9101-6. PubMed ID: 23971517 [TBL] [Abstract][Full Text] [Related]
44. Heptad-repeat-2 mutations enhance the stability of the enfuvirtide-resistant HIV-1 gp41 hairpin structure. Jenwitheesuk E; Samudrala R Antivir Ther; 2005; 10(8):893-900. PubMed ID: 16430194 [TBL] [Abstract][Full Text] [Related]
45. Differential inhibition of HIV-1 and SIV envelope-mediated cell fusion by C34 peptides derived from the C-terminal heptad repeat of gp41 from diverse strains of HIV-1, HIV-2, and SIV. Gustchina E; Hummer G; Bewley CA; Clore GM J Med Chem; 2005 Apr; 48(8):3036-44. PubMed ID: 15828842 [TBL] [Abstract][Full Text] [Related]
46. Direct measurement of protein osmotic second virial cross coefficients by cross-interaction chromatography. Tessier PM; Sandler SI; Lenhoff AM Protein Sci; 2004 May; 13(5):1379-90. PubMed ID: 15075404 [TBL] [Abstract][Full Text] [Related]
47. [Synthesis of an ethylamide of the cyclic undecapeptide sequence 593-603 of transmembrane glycoprotein gp41 of the human immunodeficiency virus type 2]. Sidorova MV; Kudriavtseva EV; Molokoedov AS; Ovchinnikov MV; Bespalova ZhD Bioorg Khim; 1995 Sep; 21(9):675-83. PubMed ID: 8588812 [TBL] [Abstract][Full Text] [Related]
48. Inclusion of mPRISM potential for polymer-induced protein interactions enables modeling of second osmotic virial coefficients in aqueous polymer-salt solutions. Herhut M; Brandenbusch C; Sadowski G Biotechnol J; 2016 Jan; 11(1):146-54. PubMed ID: 26250594 [TBL] [Abstract][Full Text] [Related]
49. The hydrophobic pocket contributes to the structural stability of the N-terminal coiled coil of HIV gp41 but is not required for six-helix bundle formation. Dwyer JJ; Hasan A; Wilson KL; White JM; Matthews TJ; Delmedico MK Biochemistry; 2003 May; 42(17):4945-53. PubMed ID: 12718536 [TBL] [Abstract][Full Text] [Related]
50. Correlation between the osmotic second virial coefficient and solubility for equine serum albumin and ovalbumin. Demoruelle K; Guo B; Kao S; McDonald HM; Nikic DB; Holman SC; Wilson WW Acta Crystallogr D Biol Crystallogr; 2002 Oct; 58(Pt 10 Pt 1):1544-8. PubMed ID: 12351858 [TBL] [Abstract][Full Text] [Related]
51. Impact of human immunodeficiency virus type 1 gp41 amino acid substitutions selected during enfuvirtide treatment on gp41 binding and antiviral potency of enfuvirtide in vitro. Mink M; Mosier SM; Janumpalli S; Davison D; Jin L; Melby T; Sista P; Erickson J; Lambert D; Stanfield-Oakley SA; Salgo M; Cammack N; Matthews T; Greenberg ML J Virol; 2005 Oct; 79(19):12447-54. PubMed ID: 16160172 [TBL] [Abstract][Full Text] [Related]
52. Self-interaction nanoparticle spectroscopy: a nanoparticle-based protein interaction assay. Tessier PM; Jinkoji J; Cheng YC; Prentice JL; Lenhoff AM J Am Chem Soc; 2008 Mar; 130(10):3106-12. PubMed ID: 18271584 [TBL] [Abstract][Full Text] [Related]
53. Screening of protein-ligand interactions by affinity chromatography. García CD; Holman SC; Henry CS; Wilson WW Biotechnol Prog; 2003; 19(2):575-9. PubMed ID: 12675603 [TBL] [Abstract][Full Text] [Related]
54. High-throughput self-interaction chromatography: applications in protein formulation prediction. Johnson DH; Parupudi A; Wilson WW; DeLucas LJ Pharm Res; 2009 Feb; 26(2):296-305. PubMed ID: 18923812 [TBL] [Abstract][Full Text] [Related]
55. Measurement of the second osmotic virial coefficient for protein solutions exhibiting monomer-dimer equilibrium. Alford JR; Kendrick BS; Carpenter JF; Randolph TW Anal Biochem; 2008 Jun; 377(2):128-33. PubMed ID: 18395000 [TBL] [Abstract][Full Text] [Related]
56. An adaptation of hydrophobic interaction chromatography for estimation of protein solubility optima. Gagnon P; Mayes T; Danielsson A J Pharm Biomed Anal; 1997 Dec; 16(4):587-92. PubMed ID: 9502154 [TBL] [Abstract][Full Text] [Related]
57. Characterizing protein-protein-interaction in high-concentration monoclonal antibody systems with the quartz crystal microbalance. Hartl J; Peschel A; Johannsmann D; Garidel P Phys Chem Chem Phys; 2017 Dec; 19(48):32698-32707. PubMed ID: 29199300 [TBL] [Abstract][Full Text] [Related]
58. Nonmonotonic variation with salt concentration of the second virial coefficient in protein solutions. Allahyarov E; Löwen H; Hansen JP; Louis AA Phys Rev E Stat Nonlin Soft Matter Phys; 2003 May; 67(5 Pt 1):051404. PubMed ID: 12786149 [TBL] [Abstract][Full Text] [Related]
59. Measurement of osmotic second virial coefficients by zonal size-exclusion chromatography. Winzor DJ Anal Biochem; 2016 Jul; 504():59-63. PubMed ID: 27095059 [TBL] [Abstract][Full Text] [Related]
60. Self-interaction chromatography of proteins on a microfluidic monolith. Martin C; Lenhoff AM Biochem Eng J; 2011 Jan; 53(2):216-22. PubMed ID: 21258647 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]