BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

862 related articles for article (PubMed ID: 16767771)

  • 1. Two peptide fragments G55-I72 and K97-A109 from staphylococcal nuclease exhibit different behaviors in conformational preferences for helix formation.
    Wang M; Shan L; Wang J
    Biopolymers; 2006 Oct; 83(3):268-79. PubMed ID: 16767771
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Searching for folding initiation sites of staphylococcal nuclease: a study of N-terminal short fragments.
    Dai J; Wang X; Feng Y; Fan G; Wang J
    Biopolymers; 2004 Oct; 75(3):229-41. PubMed ID: 15378482
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformations of peptide fragments from the FK506 binding protein: comparison with the native and urea-unfolded states.
    Callihan DE; Logan TM
    J Mol Biol; 1999 Feb; 285(5):2161-75. PubMed ID: 9925792
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conformational properties of five peptides corresponding to the entire sequence of glutathione transferase domain II.
    Dragani B; Cocco R; Principe DR; Paludi D; Aceto A
    Arch Biochem Biophys; 2001 May; 389(1):15-21. PubMed ID: 11370666
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insight into a random coil conformation and an isolated helix: structural and dynamical characterisation of the C-helix peptide from hen lysozyme.
    Bolin KA; Pitkeathly M; Miranker A; Smith LJ; Dobson CM
    J Mol Biol; 1996 Aug; 261(3):443-53. PubMed ID: 8780785
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Importance of the C-terminal loop L137-S141 for the folding and folding stability of staphylococcal nuclease.
    Wang M; Feng Y; Yao H; Wang J
    Biochemistry; 2010 May; 49(20):4318-26. PubMed ID: 20415411
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Search for nucleation sites in smaller fragments of chymotrypsin inhibitor 2.
    Itzhaki LS; Neira JL; Ruiz-Sanz J; de Prat Gay G; Fersht AR
    J Mol Biol; 1995 Nov; 254(2):289-304. PubMed ID: 7490749
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformational preferences of a peptide corresponding to the major antigenic determinant of foot-and-mouth disease virus: implications for peptide-vaccine approaches.
    de Prat-Gay G
    Arch Biochem Biophys; 1997 May; 341(2):360-9. PubMed ID: 9169027
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High helical propensity of the peptide fragments derived from beta-lactoglobulin, a predominantly beta-sheet protein.
    Hamada D; Kuroda Y; Tanaka T; Goto Y
    J Mol Biol; 1995 Dec; 254(4):737-46. PubMed ID: 7500346
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solution structures of stomoxyn and spinigerin, two insect antimicrobial peptides with an alpha-helical conformation.
    Landon C; Meudal H; Boulanger N; Bulet P; Vovelle F
    Biopolymers; 2006 Feb; 81(2):92-103. PubMed ID: 16170803
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Local interactions drive the formation of nonnative structure in the denatured state of human alpha-lactalbumin: a high resolution structural characterization of a peptide model in aqueous solution.
    Demarest SJ; Hua Y; Raleigh DP
    Biochemistry; 1999 Jun; 38(22):7380-7. PubMed ID: 10353850
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of peptides corresponding to the seven transmembrane domains of human adenosine A2a receptor.
    Lazarova T; Brewin KA; Stoeber K; Robinson CR
    Biochemistry; 2004 Oct; 43(40):12945-54. PubMed ID: 15461468
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformational properties of peptide fragments homologous to the 106-114 and 106-126 residues of the human prion protein: a CD and NMR spectroscopic study.
    Di Natale G; Impellizzeri G; Pappalardo G
    Org Biomol Chem; 2005 Feb; 3(3):490-7. PubMed ID: 15678187
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformational analysis of peptide fragments derived from the peripheral subunit-binding domain from the pyruvate dehydrogenase multienzyme complex of Bacillus stearothermophilus: evidence for nonrandom structure in the unfolded state.
    Spector S; Rosconi M; Raleigh DP
    Biopolymers; 1999 Jan; 49(1):29-40. PubMed ID: 10070261
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the structure and dynamics of mastoparan-X during folding in aqueous TFE by CD and NMR spectroscopy.
    Crandall YM; Bruch MD
    Biopolymers; 2008 Mar; 89(3):197-209. PubMed ID: 18008325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oligopeptide-mediated helix stabilization of model peptides in aqueous solution.
    Maeda Y; Nakagawa T; Kuroda Y
    J Pept Sci; 2003 Feb; 9(2):106-13. PubMed ID: 12630695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformational analysis of a set of peptides corresponding to the entire primary sequence of the N-terminal domain of the ribosomal protein L9: evidence for stable native-like secondary structure in the unfolded state.
    Luisi DL; Wu WJ; Raleigh DP
    J Mol Biol; 1999 Mar; 287(2):395-407. PubMed ID: 10080901
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing the folding capacity and residual structures in 1-79 residues fragment of staphylococcal nuclease by biophysical and NMR methods.
    Wang X; Wang M; Tong Y; Shan L; Wang J
    Biochimie; 2006 Oct; 88(10):1343-55. PubMed ID: 17045725
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Helix propagation in trifluoroethanol solutions.
    Storrs RW; Truckses D; Wemmer DE
    Biopolymers; 1992 Dec; 32(12):1695-702. PubMed ID: 1472652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural characterization and topology of the second potential membrane anchor region in the thromboxane A2 synthase amino-terminal domain.
    Ruan KH; Li D; Ji J; Lin YZ; Gao X
    Biochemistry; 1998 Jan; 37(3):822-30. PubMed ID: 9454571
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 44.