These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 16767808)
1. The elastic properties of morsellised cortico-cancellous bone graft are dependent on its prior loading. Phillips AT; Pankaj ; Brown DT; Oram TZ; Howie CR; Usmani AS J Biomech; 2006; 39(8):1517-26. PubMed ID: 16767808 [TBL] [Abstract][Full Text] [Related]
2. Constitutive models for impacted morsellised cortico-cancellous bone. Phillips A; Pankaj P; May F; Taylor K; Howie C; Usmani A Biomaterials; 2006 Mar; 27(9):2162-70. PubMed ID: 16309740 [TBL] [Abstract][Full Text] [Related]
3. On the applicability of bovine morsellized cortico-cancellous bone as a substitute for human morsellized cortico-cancellous bone for in vitro mechanical testing. Lunde KB; Foss OA; Skallerud B J Biomech; 2008 Dec; 41(16):3469-74. PubMed ID: 18995858 [TBL] [Abstract][Full Text] [Related]
4. Material properties of femoral cancellous bone in axial loading. Part I: Time independent properties. Rohlmann A; Zilch H; Bergmann G; Kölbel R Arch Orthop Trauma Surg (1978); 1980; 97(2):95-102. PubMed ID: 7458606 [TBL] [Abstract][Full Text] [Related]
5. Material properties of femoral cancellous bone in axial loading. Part II: Time dependent properties. Zilch H; Rohlmann A; Bergmann G; Kölbel R Arch Orthop Trauma Surg (1978); 1980; 97(4):257-62. PubMed ID: 7458609 [TBL] [Abstract][Full Text] [Related]
6. Viscoelastic modelling of impacted morsellised bone accurately describes unloading behaviour: an experimental study of stiffness moduli and recoil properties. Fosse L; Muller S; Rønningen H; Irgens F; Benum P J Biomech; 2006; 39(12):2295-302. PubMed ID: 16169553 [TBL] [Abstract][Full Text] [Related]
7. The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs. Papini M; Zdero R; Schemitsch EH; Zalzal P J Biomech Eng; 2007 Feb; 129(1):12-9. PubMed ID: 17227093 [TBL] [Abstract][Full Text] [Related]
8. 3D non-linear analysis of the acetabular construct following impaction grafting. Phillips AT; Pankaj P; Howie CR; Usmani AS; Simpson AH Comput Methods Biomech Biomed Engin; 2006 Jun; 9(3):125-33. PubMed ID: 16880163 [TBL] [Abstract][Full Text] [Related]
9. Dynamic response of immature bovine articular cartilage in tension and compression, and nonlinear viscoelastic modeling of the tensile response. Park S; Ateshian GA J Biomech Eng; 2006 Aug; 128(4):623-30. PubMed ID: 16813454 [TBL] [Abstract][Full Text] [Related]
10. Morsellised sawbones is an acceptable experimental substitute for the in vitro elastic and viscoelastic mechanical characterisation of morsellised cancellous bone undergoing impaction grafting. Ayers MP; Clift SE; Gheduzzi S Med Eng Phys; 2014 Jan; 36(1):26-31. PubMed ID: 24075067 [TBL] [Abstract][Full Text] [Related]
11. Finite element models predict cancellous apparent modulus when tissue modulus is scaled from specimen CT-attenuation. Bourne BC; van der Meulen MC J Biomech; 2004 May; 37(5):613-21. PubMed ID: 15046990 [TBL] [Abstract][Full Text] [Related]
13. Micro-cantilever bending for elastic modulus measurements of a single trabecula in cancellous bone. Yamada S; Tadano S; Fukasawa K J Biomech; 2016 Dec; 49(16):4124-4127. PubMed ID: 27793405 [TBL] [Abstract][Full Text] [Related]
14. An experimental study on the biomechanical properties of the cancellous bones of distal femur. Du C; Ma H; Ruo M; Zhang Z; Yu X; Zeng Y Biomed Mater Eng; 2006; 16(3):215-22. PubMed ID: 16518020 [TBL] [Abstract][Full Text] [Related]
15. Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue. Bayraktar HH; Morgan EF; Niebur GL; Morris GE; Wong EK; Keaveny TM J Biomech; 2004 Jan; 37(1):27-35. PubMed ID: 14672565 [TBL] [Abstract][Full Text] [Related]
16. Dependence of mechanical compressive strength on local variations in microarchitecture in cancellous bone of proximal human femur. Perilli E; Baleani M; Ohman C; Fognani R; Baruffaldi F; Viceconti M J Biomech; 2008; 41(2):438-46. PubMed ID: 17949726 [TBL] [Abstract][Full Text] [Related]
17. Critical evaluation of known bone material properties to realize anisotropic FE-simulation of the proximal femur. Wirtz DC; Schiffers N; Pandorf T; Radermacher K; Weichert D; Forst R J Biomech; 2000 Oct; 33(10):1325-30. PubMed ID: 10899344 [TBL] [Abstract][Full Text] [Related]
18. Elastic moduli, yield stress, and ultimate stress of cancellous bone in the canine proximal femur. Vahey JW; Lewis JL; Vanderby R J Biomech; 1987; 20(1):29-33. PubMed ID: 3558426 [TBL] [Abstract][Full Text] [Related]
19. The modified cam clay model for constrained compression of human morsellised bone: effects of porosity on the mechanical behaviour. Lunde KB; Skallerud B J Mech Behav Biomed Mater; 2009 Jan; 2(1):43-50. PubMed ID: 19627806 [TBL] [Abstract][Full Text] [Related]