These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 16767812)

  • 1. Lactic acid accumulation is an advantage/disadvantage during muscle activity.
    Gladden LB; Hogan MC
    J Appl Physiol (1985); 2006 Jun; 100(6):2100-1. PubMed ID: 16767812
    [No Abstract]   [Full Text] [Related]  

  • 2. Lactic acid accumulation is an advantage/disadvantage during muscle activity.
    Lindinger MI
    J Appl Physiol (1985); 2006 Jun; 100(6):2100. PubMed ID: 16714418
    [No Abstract]   [Full Text] [Related]  

  • 3. Lactic acid accumulation is an advantage/disadvantage during muscle activity.
    Tupling R
    J Appl Physiol (1985); 2006 Jun; 100(6):2101-2. PubMed ID: 16767814
    [No Abstract]   [Full Text] [Related]  

  • 4. Lactic acid accumulation is an advantage/disadvantage during muscle activity.
    Brooks GA; Henderson GC; Hashimoto T; Mau T; Fattor JA; Horning MA; Hussien R; Cho HS; Faghihnia N; Zarins Z
    J Appl Physiol (1985); 2006 Jun; 100(6):2100. PubMed ID: 16767811
    [No Abstract]   [Full Text] [Related]  

  • 5. Lactic acid accumulation is an advantage/disadvantage during muscle activity.
    Vissing J
    J Appl Physiol (1985); 2006 Jun; 100(6):2101. PubMed ID: 16767813
    [No Abstract]   [Full Text] [Related]  

  • 6. Point:Counterpoint authors respond to commentaries on "Lactic acid accumulation is an advantage/disadvantage during muscle activity".
    Nielsen OB; Overgaard K
    J Appl Physiol (1985); 2006 Jul; 101(1):367; author reply 369-70. PubMed ID: 16782838
    [No Abstract]   [Full Text] [Related]  

  • 7. Point:Counterpoint authors respond to commentaries on "Lactic acid accumulation is an advantage/disadvantage during muscle activity".
    Renaud JM
    J Appl Physiol (1985); 2006 Jul; 101(1):367-8; author reply 369-70. PubMed ID: 16848011
    [No Abstract]   [Full Text] [Related]  

  • 8. Point:Counterpoint authors respond to commentaries on "Lactic acid accumulation is an advantage/disadvantage during muscle activity".
    Sahlin K
    J Appl Physiol (1985); 2006 Jul; 101(1):367; author reply 369-70. PubMed ID: 16848010
    [No Abstract]   [Full Text] [Related]  

  • 9. Lactic acid accumulation is an advantage/disadvantage during muscle activity.
    Burnley M; Wilkerson DP; Jones AM
    J Appl Physiol (1985); 2006 Aug; 101(2):683. PubMed ID: 16690787
    [No Abstract]   [Full Text] [Related]  

  • 10. Comments on Point:Counterpoint series "Lactic acid accumulation is an advantage/disadvantage during muscle activity".
    Messonnier L; Denis C; FĂ©asson L; Lacour JR
    J Appl Physiol (1985); 2006 Oct; 101(4):1269. PubMed ID: 17019758
    [No Abstract]   [Full Text] [Related]  

  • 11. Comments on Point:Counterpoint series "Lactic acid accumulation is an advantage/disadvantage during muscle activity".
    Connes P; Sara F; Hue O
    J Appl Physiol (1985); 2006 Oct; 101(4):1269. PubMed ID: 16777996
    [No Abstract]   [Full Text] [Related]  

  • 12. Counterpoint: lactic acid accumulation is a disadvantage during muscle activity.
    Bangsbo J; Juel C
    J Appl Physiol (1985); 2006 Apr; 100(4):1412-3; discussion 1413-4. PubMed ID: 16646130
    [No Abstract]   [Full Text] [Related]  

  • 13. Point: lactic acid accumulation is an advantage during muscle activity.
    Lamb GD; Stephenson DG
    J Appl Physiol (1985); 2006 Apr; 100(4):1410-2; discussion 1414. PubMed ID: 16540714
    [No Abstract]   [Full Text] [Related]  

  • 14. Physiology. Lactic acid--the latest performance-enhancing drug.
    Allen D; Westerblad H
    Science; 2004 Aug; 305(5687):1112-3. PubMed ID: 15326341
    [No Abstract]   [Full Text] [Related]  

  • 15. Dynamic vacuolation in skeletal muscle fibres after fatigue.
    Lännergren J; Westerblad H; Bruton JD
    Cell Biol Int; 2002; 26(10):911-20. PubMed ID: 12421582
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The "glycogen shunt" in exercising muscle: A role for glycogen in muscle energetics and fatigue.
    Shulman RG; Rothman DL
    Proc Natl Acad Sci U S A; 2001 Jan; 98(2):457-61. PubMed ID: 11209049
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intracellular acidosis enhances the excitability of working muscle.
    Pedersen TH; Nielsen OB; Lamb GD; Stephenson DG
    Science; 2004 Aug; 305(5687):1144-7. PubMed ID: 15326352
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lactate and force production in skeletal muscle.
    Kristensen M; Albertsen J; Rentsch M; Juel C
    J Physiol; 2005 Jan; 562(Pt 2):521-6. PubMed ID: 15550457
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intracellular pH during sequential, fatiguing contractile periods in isolated single Xenopus skeletal muscle fibers.
    Stary CM; Hogan MC
    J Appl Physiol (1985); 2005 Jul; 99(1):308-12. PubMed ID: 15761085
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combating muscle fatigue: extracellular lactic acidosis and catecholamines.
    Lindinger MI
    J Physiol; 2007 Jun; 581(Pt 2):419. PubMed ID: 17379626
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.