BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 16768291)

  • 41. Injectable and porous PLGA microspheres that form highly porous scaffolds at body temperature.
    Qutachi O; Vetsch JR; Gill D; Cox H; Scurr DJ; Hofmann S; Müller R; Quirk RA; Shakesheff KM; Rahman CV
    Acta Biomater; 2014 Dec; 10(12):5090-5098. PubMed ID: 25152354
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Hierarchical polymeric scaffolds support the growth of MC3T3-E1 cells.
    Akbarzadeh R; Minton JA; Janney CS; Smith TA; James PF; Yousefi AM
    J Mater Sci Mater Med; 2015 Feb; 26(2):116. PubMed ID: 25665851
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Preparation and in vitro characterization of novel hydrophilic poly(D,L-lactide)/poly (ethylene glycol)-poly (lactide) composite scaffolds].
    Sun R; Pan G; Zhang L; Du J; Xiong C
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Feb; 24(1):91-6. PubMed ID: 17333899
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Fabrication and characterization of hydrophilic poly(lactic-co-glycolic acid)/poly(vinyl alcohol) blend cell scaffolds by melt-molding particulate-leaching method.
    Oh SH; Kang SG; Kim ES; Cho SH; Lee JH
    Biomaterials; 2003 Oct; 24(22):4011-21. PubMed ID: 12834596
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A "room-temperature" injection molding/particulate leaching approach for fabrication of biodegradable three-dimensional porous scaffolds.
    Wu L; Jing D; Ding J
    Biomaterials; 2006 Jan; 27(2):185-91. PubMed ID: 16098580
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Influence of PLGA concentrations on structural and mechanical properties of carbonate apatite foam.
    Munar GM; Munar ML; Tsuru K; Ishikawa K
    Dent Mater J; 2013; 32(4):608-14. PubMed ID: 23903643
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Multinozzle low-temperature deposition system for construction of gradient tissue engineering scaffolds.
    Liu L; Xiong Z; Yan Y; Zhang R; Wang X; Jin L
    J Biomed Mater Res B Appl Biomater; 2009 Jan; 88(1):254-63. PubMed ID: 18698625
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Facile fabrication of poly(L-lactic acid)-grafted hydroxyapatite/poly(lactic-co-glycolic acid) scaffolds by Pickering high internal phase emulsion templates.
    Hu Y; Gu X; Yang Y; Huang J; Hu M; Chen W; Tong Z; Wang C
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):17166-75. PubMed ID: 25243730
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Characterization of emulsified chitosan-PLGA matrices formed using controlled-rate freezing and lyophilization technique.
    Moshfeghian A; Tillman J; Madihally SV
    J Biomed Mater Res A; 2006 Nov; 79(2):418-30. PubMed ID: 16906526
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Synthesis, characterization, biodegradation, and drug delivery application of biodegradable lactic/glycolic acid polymers: I. Synthesis and characterization.
    Wang N; Wu XS; Li C; Feng MF
    J Biomater Sci Polym Ed; 2000; 11(3):301-18. PubMed ID: 10841281
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Characterization of knitted polymeric scaffolds for potential use in ligament tissue engineering.
    Ge Z; Goh JC; Wang L; Tan EP; Lee EH
    J Biomater Sci Polym Ed; 2005; 16(9):1179-92. PubMed ID: 16231607
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effect of some factors on fabrication of poly(L-lactic acid) microporous foams by thermally induced phase separation using N,N-dimethylacetamide as solvent.
    Li S; Chen X; Li M
    Prep Biochem Biotechnol; 2011; 41(1):53-72. PubMed ID: 21229464
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effects of common sterilization methods on the structure and properties of poly(D,L lactic-co-glycolic acid) scaffolds.
    Shearer H; Ellis MJ; Perera SP; Chaudhuri JB
    Tissue Eng; 2006 Oct; 12(10):2717-27. PubMed ID: 17518641
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Bone augmentation using a highly porous PLGA/β-TCP scaffold containing fibroblast growth factor-2.
    Yoshida T; Miyaji H; Otani K; Inoue K; Nakane K; Nishimura H; Ibara A; Shimada A; Ogawa K; Nishida E; Sugaya T; Sun L; Fugetsu B; Kawanami M
    J Periodontal Res; 2015 Apr; 50(2):265-73. PubMed ID: 24966062
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Less harmful acidic degradation of poly(lacticco-glycolic acid) bone tissue engineering scaffolds through titania nanoparticle addition.
    Liu H; Slamovich EB; Webster TJ
    Int J Nanomedicine; 2006; 1(4):541-5. PubMed ID: 17722285
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Synthesis, characterization, biodegradation, and drug delivery application of biodegradable lactic/glycolic acid polymers. Part II: biodegradation.
    Wu XS; Wang N
    J Biomater Sci Polym Ed; 2001; 12(1):21-34. PubMed ID: 11334187
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Conjugation of drug to poly(D,L-lactic-co-glycolic acid) for controlled release from biodegradable microspheres.
    Oh JE; Nam YS; Lee KH; Park TG
    J Control Release; 1999 Feb; 57(3):269-80. PubMed ID: 9895414
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A method for solvent-free fabrication of porous polymer using solid-state foaming and ultrasound for tissue engineering applications.
    Wang X; Li W; Kumar V
    Biomaterials; 2006 Mar; 27(9):1924-9. PubMed ID: 16219346
    [TBL] [Abstract][Full Text] [Related]  

  • 59. PCL-PGLA composite tubular scaffold preparation and biocompatibility investigation.
    Mo X; Weber HJ; Ramakrishna S
    Int J Artif Organs; 2006 Aug; 29(8):790-9. PubMed ID: 16969757
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Elucidation of the physicomechanical and ab initio quantum energy transitions of a crosslinked PLGA scaffold.
    Sibambo SR; Pillay V; Choonara YE; Khan RA; Sweet JL
    Biomaterials; 2007 Sep; 28(25):3714-23. PubMed ID: 17524474
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.