These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 16768297)
1. Can one assess whether missing data are missing at random in medical studies? Potthoff RF; Tudor GE; Pieper KS; Hasselblad V Stat Methods Med Res; 2006 Jun; 15(3):213-34. PubMed ID: 16768297 [TBL] [Abstract][Full Text] [Related]
2. A structured framework for assessing sensitivity to missing data assumptions in longitudinal clinical trials. Mallinckrodt CH; Lin Q; Molenberghs M Pharm Stat; 2013; 12(1):1-6. PubMed ID: 23193075 [TBL] [Abstract][Full Text] [Related]
3. An application of a pattern-mixture model with multiple imputation for the analysis of longitudinal trials with protocol deviations. Iddrisu AK; Gumedze F BMC Med Res Methodol; 2019 Jan; 19(1):10. PubMed ID: 30626328 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of a weighting approach for performing sensitivity analysis after multiple imputation. Rezvan PH; White IR; Lee KJ; Carlin JB; Simpson JA BMC Med Res Methodol; 2015 Oct; 15():83. PubMed ID: 26464305 [TBL] [Abstract][Full Text] [Related]
5. A hybrid return to baseline imputation method to incorporate MAR and MNAR dropout missingness. Jin M Contemp Clin Trials; 2022 Sep; 120():106859. PubMed ID: 35872135 [TBL] [Abstract][Full Text] [Related]
6. What impact do assumptions about missing data have on conclusions? A practical sensitivity analysis for a cancer survival registry. Smuk M; Carpenter JR; Morris TP BMC Med Res Methodol; 2017 Feb; 17(1):21. PubMed ID: 28166735 [TBL] [Abstract][Full Text] [Related]
7. Sensitivity analysis after multiple imputation under missing at random: a weighting approach. Carpenter JR; Kenward MG; White IR Stat Methods Med Res; 2007 Jun; 16(3):259-75. PubMed ID: 17621471 [TBL] [Abstract][Full Text] [Related]
8. On analysis of longitudinal clinical trials with missing data using reference-based imputation. Liu GF; Pang L J Biopharm Stat; 2016; 26(5):924-36. PubMed ID: 26418282 [TBL] [Abstract][Full Text] [Related]
9. Addressing missing outcome data in randomised controlled trials: A methodological scoping review. Medcalf E; Turner RM; Espinoza D; He V; Bell KJL Contemp Clin Trials; 2024 Aug; 143():107602. PubMed ID: 38857674 [TBL] [Abstract][Full Text] [Related]
10. Missing not at random models for latent growth curve analyses. Enders CK Psychol Methods; 2011 Mar; 16(1):1-16. PubMed ID: 21381816 [TBL] [Abstract][Full Text] [Related]
11. Considerations of multiple imputation approaches for handling missing data in clinical trials. Quan H; Qi L; Luo X; Darchy L Contemp Clin Trials; 2018 Jul; 70():62-71. PubMed ID: 29777866 [TBL] [Abstract][Full Text] [Related]
12. Missing not at random in end of life care studies: multiple imputation and sensitivity analysis on data from the ACTION study. Carreras G; Miccinesi G; Wilcock A; Preston N; Nieboer D; Deliens L; Groenvold M; Lunder U; van der Heide A; Baccini M; BMC Med Res Methodol; 2021 Jan; 21(1):13. PubMed ID: 33422019 [TBL] [Abstract][Full Text] [Related]
13. [Roaming through methodology. XVI. What to do about missing data]. Stijnen T; Arends LR Ned Tijdschr Geneeskd; 1999 Oct; 143(40):1996-2000. PubMed ID: 10535056 [TBL] [Abstract][Full Text] [Related]
15. Handling of missing data in long-term clinical trials: a case study. Janssens M; Molenberghs G; Kerstens R Pharm Stat; 2012; 11(6):442-8. PubMed ID: 22888095 [TBL] [Abstract][Full Text] [Related]
16. Dealing with missing outcome data in meta-analysis. Mavridis D; White IR Res Synth Methods; 2020 Jan; 11(1):2-13. PubMed ID: 30991455 [TBL] [Abstract][Full Text] [Related]
17. Guided multiple imputation of missing data: using a subsample to strengthen the missing-at-random assumption. Fraser G; Yan R Epidemiology; 2007 Mar; 18(2):246-52. PubMed ID: 17259903 [TBL] [Abstract][Full Text] [Related]
18. The impact of missing data in a generalized integer-valued autoregression model for count data. Alosh M J Biopharm Stat; 2009 Nov; 19(6):1039-54. PubMed ID: 20183463 [TBL] [Abstract][Full Text] [Related]
19. Comparison of data analysis strategies for intent-to-treat analysis in pre-test-post-test designs with substantial dropout rates. Salim A; Mackinnon A; Christensen H; Griffiths K Psychiatry Res; 2008 Sep; 160(3):335-45. PubMed ID: 18718673 [TBL] [Abstract][Full Text] [Related]
20. [How to deal with missing data? Multiple imputation by chained equations: recommendations and explanations for clinical practice]. Legendre B; Cerasuolo D; Dejardin O; Boyer A Nephrol Ther; 2023 Jun; 19(3):171-179. PubMed ID: 37272826 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]