These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 16768358)

  • 1. Attentional preparation for a lateralized visual distractor: behavioral and fMRI evidence.
    Ruff CC; Driver J
    J Cogn Neurosci; 2006 Apr; 18(4):522-38. PubMed ID: 16768358
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On-line attentional selection from competing stimuli in opposite visual fields: effects on human visual cortex and control processes.
    Geng JJ; Eger E; Ruff CC; Kristjánsson A; Rotshtein P; Driver J
    J Neurophysiol; 2006 Nov; 96(5):2601-12. PubMed ID: 16855105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparatory effects of distractor suppression: evidence from visual cortex.
    Munneke J; Heslenfeld DJ; Usrey WM; Theeuwes J; Mangun GR
    PLoS One; 2011; 6(12):e27700. PubMed ID: 22164213
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Independence of anticipatory signals for spatial attention from number of nontarget stimuli in the visual field.
    Sestieri C; Sylvester CM; Jack AI; d'Avossa G; Shulman GL; Corbetta M
    J Neurophysiol; 2008 Aug; 100(2):829-38. PubMed ID: 18550727
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting N2pc from anticipatory HbO activity during sustained visuospatial attention: a concurrent fNIRS-ERP study.
    Huang J; Wang F; Ding Y; Niu H; Tian F; Liu H; Song Y
    Neuroimage; 2015 Jun; 113():225-34. PubMed ID: 25818691
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of the cholinergic agonist nicotine on reorienting of visual spatial attention and top-down attentional control.
    Thiel CM; Fink GR
    Neuroscience; 2008 Mar; 152(2):381-90. PubMed ID: 18272290
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of the pulvinar in distractor processing and visual search.
    Strumpf H; Mangun GR; Boehler CN; Stoppel C; Schoenfeld MA; Heinze HJ; Hopf JM
    Hum Brain Mapp; 2013 May; 34(5):1115-32. PubMed ID: 22488931
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Frontal eye fields control attentional modulation of alpha and gamma oscillations in contralateral occipitoparietal cortex.
    Marshall TR; O'Shea J; Jensen O; Bergmann TO
    J Neurosci; 2015 Jan; 35(4):1638-47. PubMed ID: 25632139
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Directing attention to a location in space results in retinotopic activation in primary visual cortex.
    Munneke J; Heslenfeld DJ; Theeuwes J
    Brain Res; 2008 Jul; 1222():184-91. PubMed ID: 18589405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Active ignoring in early visual cortex.
    Payne HE; Allen HA
    J Cogn Neurosci; 2011 Aug; 23(8):2046-58. PubMed ID: 20807054
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Responses to rare visual target and distractor stimuli using event-related fMRI.
    Clark VP; Fannon S; Lai S; Benson R; Bauer L
    J Neurophysiol; 2000 May; 83(5):3133-9. PubMed ID: 10805707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brain structures involved in visual search in the presence and absence of color singletons.
    Talsma D; Coe B; Munoz DP; Theeuwes J
    J Cogn Neurosci; 2010 Apr; 22(4):761-74. PubMed ID: 19309291
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A functional MRI study of preparatory signals for spatial location and objects.
    Corbetta M; Tansy AP; Stanley CM; Astafiev SV; Snyder AZ; Shulman GL
    Neuropsychologia; 2005; 43(14):2041-56. PubMed ID: 16243051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Attentional systems in target and distractor processing: a combined ERP and fMRI study.
    Bledowski C; Prvulovic D; Goebel R; Zanella FE; Linden DE
    Neuroimage; 2004 Jun; 22(2):530-40. PubMed ID: 15193581
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Attending to multiple visual streams: interactions between location-based and category-based attentional selection.
    Fagioli S; Macaluso E
    J Cogn Neurosci; 2009 Aug; 21(8):1628-41. PubMed ID: 18823252
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural integration of top-down spatial and feature-based information in visual search.
    Egner T; Monti JM; Trittschuh EH; Wieneke CA; Hirsch J; Mesulam MM
    J Neurosci; 2008 Jun; 28(24):6141-51. PubMed ID: 18550756
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distractor-resistant Short-Term Memory Is Supported by Transient Changes in Neural Stimulus Representations.
    Derrfuss J; Ekman M; Hanke M; Tittgemeyer M; Fiebach CJ
    J Cogn Neurosci; 2017 Sep; 29(9):1547-1565. PubMed ID: 28430039
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrophysiological indices of target and distractor processing in visual search.
    Hickey C; Di Lollo V; McDonald JJ
    J Cogn Neurosci; 2009 Apr; 21(4):760-75. PubMed ID: 18564048
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phonological processing of ignored distractor pictures, an fMRI investigation.
    Bles M; Jansma BM
    BMC Neurosci; 2008 Feb; 9():20. PubMed ID: 18267005
    [TBL] [Abstract][Full Text] [Related]  

  • 20. fMRI-guided TMS on cortical eye fields: the frontal but not intraparietal eye fields regulate the coupling between visuospatial attention and eye movements.
    Van Ettinger-Veenstra HM; Huijbers W; Gutteling TP; Vink M; Kenemans JL; Neggers SF
    J Neurophysiol; 2009 Dec; 102(6):3469-80. PubMed ID: 19812293
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.