These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 16768377)

  • 1. Context modulates early stimulus processing when resolving stimulus-response conflict.
    Scerif G; Worden MS; Davidson M; Seiger L; Casey BJ
    J Cogn Neurosci; 2006 May; 18(5):781-92. PubMed ID: 16768377
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Appearing and disappearing stimuli trigger a reflexive modulation of visual cortical activity.
    Hopfinger JB; Maxwell JS
    Brain Res Cogn Brain Res; 2005 Sep; 25(1):48-56. PubMed ID: 15907377
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Perceptual load affects spatial and nonspatial visual selection processes: an event-related brain potential study.
    Barnhardt J; Ritter W; Gomes H
    Neuropsychologia; 2008; 46(7):2071-8. PubMed ID: 18355882
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cognitive control mechanisms resolve conflict through cortical amplification of task-relevant information.
    Egner T; Hirsch J
    Nat Neurosci; 2005 Dec; 8(12):1784-90. PubMed ID: 16286928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anticipated action consequences as a nexus between action and perception: evidence from event-related potentials.
    Nikolaev AR; Ziessler M; Dimova K; van Leeuwen C
    Biol Psychol; 2008 Apr; 78(1):53-65. PubMed ID: 18289769
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Context specificity of conflict frequency-dependent control.
    Vietze I; Wendt M
    Q J Exp Psychol (Hove); 2009 Jul; 62(7):1391-400. PubMed ID: 19048452
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disentangling sequential effects of stimulus- and response-related conflict and stimulus-response repetition using brain potentials.
    Wendt M; Heldmann M; Münte TF; Kluwe RH
    J Cogn Neurosci; 2007 Jul; 19(7):1104-12. PubMed ID: 17583987
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective attention to specific features within objects: behavioral and electrophysiological evidence.
    Nobre AC; Rao A; Chelazzi L
    J Cogn Neurosci; 2006 Apr; 18(4):539-61. PubMed ID: 16768359
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Early and late temporo-spatial effects of contextual interference during perception of facial affect.
    Frühholz S; Fehr T; Herrmann M
    Int J Psychophysiol; 2009 Oct; 74(1):1-13. PubMed ID: 19470392
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The costs of emotional attention: affective processing inhibits subsequent lexico-semantic analysis.
    Ihssen N; Heim S; Keil A
    J Cogn Neurosci; 2007 Dec; 19(12):1932-49. PubMed ID: 17892390
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrophysiological evidence for temporal dissociation between spatial attention and sensory competition during human face processing.
    Jacques C; Rossion B
    Cereb Cortex; 2007 May; 17(5):1055-65. PubMed ID: 16772314
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flanker negative priming from spatially unpredictable primes: an ERP study.
    Gibbons H; Frings C
    Int J Psychophysiol; 2010 Mar; 75(3):339-48. PubMed ID: 20079389
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Attentional control of task and response in lateral and medial frontal cortex: brain activity and reaction time distributions.
    Aarts E; Roelofs A; van Turennout M
    Neuropsychologia; 2009 Aug; 47(10):2089-99. PubMed ID: 19467359
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An electrophysiological investigation of preparatory attentional control in a spatial Stroop task.
    Stern ER; Mangels JA
    J Cogn Neurosci; 2006 Jun; 18(6):1004-17. PubMed ID: 16839306
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trait anxiety and the dynamics of attentional control.
    Osinsky R; Gebhardt H; Alexander N; Hennig J
    Biol Psychol; 2012 Jan; 89(1):252-9. PubMed ID: 22044800
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics of task sets: evidence from dense-array event-related potentials.
    Poulsen C; Luu P; Davey C; Tucker DM
    Brain Res Cogn Brain Res; 2005 Jun; 24(1):133-54. PubMed ID: 15922166
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parvocellular and magnocellular contributions to the initial generators of the visual evoked potential: high-density electrical mapping of the "C1" component.
    Foxe JJ; Strugstad EC; Sehatpour P; Molholm S; Pasieka W; Schroeder CE; McCourt ME
    Brain Topogr; 2008 Sep; 21(1):11-21. PubMed ID: 18784997
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Faster, more intense! The relation between electrophysiological reflections of attentional orienting, sensory gain control, and speed of responding.
    Talsma D; Mulckhuyse M; Slagter HA; Theeuwes J
    Brain Res; 2007 Oct; 1178():92-105. PubMed ID: 17931607
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cognitive control mechanisms revealed by ERP and fMRI: evidence from repeated task-switching.
    Swainson R; Cunnington R; Jackson GM; Rorden C; Peters AM; Morris PG; Jackson SR
    J Cogn Neurosci; 2003 Aug; 15(6):785-99. PubMed ID: 14511532
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatio-temporal dynamics of visual selective attention identified by a common spatial pattern decomposition method.
    Li L; Yao D; Yin G
    Brain Res; 2009 Jul; 1282():84-94. PubMed ID: 19501069
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.