BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 16768475)

  • 1. Formation of a ripple phase in nanotubular dimyristoylphosphatidylcholine bilayers confined inside nanoporous aluminum oxide substrates observed by DSC.
    Alaouie AM; Smirnov AI
    Langmuir; 2006 Jun; 22(13):5563-5. PubMed ID: 16768475
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tethered or adsorbed supported lipid bilayers in nanotubes characterized by deuterium magic angle spinning NMR spectroscopy.
    Wattraint O; Warschawski DE; Sarazin C
    Langmuir; 2005 Apr; 21(8):3226-8. PubMed ID: 15807556
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential scanning calorimetry and Fourier transform infrared spectroscopic studies of phospholipid organization and lipid-peptide interactions in nanoporous substrate-supported lipid model membranes.
    Alaouie AM; Lewis RN; McElhaney RN
    Langmuir; 2007 Jun; 23(13):7229-34. PubMed ID: 17530791
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Substrate-supported lipid nanotube arrays.
    Smirnov AI; Poluektov OG
    J Am Chem Soc; 2003 Jul; 125(28):8434-5. PubMed ID: 12848539
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Subgel studies of dimyristoylphosphatidylcholine bilayers.
    Chang HH; Bhagat RK; Tran R; Dea P
    J Phys Chem B; 2006 Nov; 110(44):22192-6. PubMed ID: 17078657
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultra-stable temperature control in EPR experiments: thermodynamics of gel-to-liquid phase transition in spin-labeled phospholipid bilayers and bilayer perturbations by spin labels.
    Alaouie AM; Smirnov AI
    J Magn Reson; 2006 Oct; 182(2):229-38. PubMed ID: 16859937
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of staphylococcal delta-lysin on the thermotropic phase behavior and vesicle morphology of dimyristoylphosphatidylcholine lipid bilayer model membranes. Differential scanning calorimetric, 31P nuclear magnetic resonance and Fourier transform infrared spectroscopic, and X-ray diffraction studies.
    Lohner K; Staudegger E; Prenner EJ; Lewis RN; Kriechbaum M; Degovics G; McElhaney RN
    Biochemistry; 1999 Dec; 38(50):16514-28. PubMed ID: 10600113
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physicochemical studies of the interaction of the lipoheptapeptide surfactin with lipid bilayers of L-alpha-dimyristoyl phosphatidylcholine.
    Kell H; Holzwarth JF; Boettcher C; Heenan RK; Vater J
    Biophys Chem; 2007 Jul; 128(2-3):114-24. PubMed ID: 17383076
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cooperativity and kinetics of phase transitions in nanopore-confined bilayers studied by differential scanning calorimetry.
    Alaouie AM; Smirnov AI
    Biophys J; 2005 Feb; 88(2):L11-3. PubMed ID: 15626698
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 15N and 31P solid-state NMR study of transmembrane domain alignment of M2 protein of influenza A virus in hydrated cylindrical lipid bilayers confined to anodic aluminum oxide nanopores.
    Chekmenev EY; Hu J; Gor'kov PL; Brey WW; Cross TA; Ruuge A; Smirnov AI
    J Magn Reson; 2005 Apr; 173(2):322-7. PubMed ID: 15780925
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of a poly(acrylic acid) oligomer with dimyristoylphosphatidylcholine bilayers.
    Filippov A; Munavirov B; Sparrman T; Ishmuhametova V; Rudakova M; Shriram P; Tavelin S
    Langmuir; 2011 Apr; 27(7):3754-61. PubMed ID: 21395273
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Configuration of carbonyl groups at the lipid interphases of different topological arrangements of lipid dispersions.
    Frías Mde L; Disalvo EA
    Langmuir; 2009 Jul; 25(14):8187-91. PubMed ID: 19438173
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arbutin blocks defects in the ripple phase of DMPC bilayers by changing carbonyl organization.
    Frías MA; Nicastro A; Casado NM; Gennaro AM; Díaz SB; Disalvo EA
    Chem Phys Lipids; 2007 May; 147(1):22-9. PubMed ID: 17442288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calorimetric studies of the effect of cis-carotenoids on the thermotropic phase behavior of phosphatidylcholine bilayers.
    Widomska J; Kostecka-Gugała A; Latowski D; Gruszecki WI; Strzałka K
    Biophys Chem; 2009 Mar; 140(1-3):108-14. PubMed ID: 19126445
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation and colloidal stability of DMPC supported lipid bilayers on SiO2 nanobeads.
    Savarala S; Ahmed S; Ilies MA; Wunder SL
    Langmuir; 2010 Jul; 26(14):12081-8. PubMed ID: 20527833
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermotropic and barotropic phase transitions of dilauroylphosphatidylcholine bilayer.
    Tada K; Goto M; Tamai N; Matsuki H; Kaneshina S
    Chem Phys Lipids; 2008 Jun; 153(2):138-43. PubMed ID: 18394426
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Interaction of cytochrome P-450 with phospholipids in dimyristoylphosphatidylcholine and dimyristoylphosphatidylglycerol mixtures].
    Gurinovich NA; Lunevich AIa; Strizhakova EP; Kiselev PA
    Mol Biol (Mosk); 1987; 21(6):1525-33. PubMed ID: 2833688
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dimyristoylphosphatidylcholine/C16:0-ceramide binary liposomes studied by differential scanning calorimetry and wide- and small-angle x-ray scattering.
    Holopainen JM; Lemmich J; Richter F; Mouritsen OG; Rapp G; Kinnunen PK
    Biophys J; 2000 May; 78(5):2459-69. PubMed ID: 10777742
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temperature change of the ripple structure in fully hydrated dimyristoylphosphatidylcholine/cholesterol multibilayers.
    Matuoka S; Kato S; Hatta I
    Biophys J; 1994 Aug; 67(2):728-36. PubMed ID: 7948686
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lipid bilayer tethered inside a nanoporous support: a solid-state nuclear magnetic resonance investigation.
    Wattraint O; Arnold A; Auger M; Bourdillon C; Sarazin C
    Anal Biochem; 2005 Jan; 336(2):253-61. PubMed ID: 15620890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.