BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 1676945)

  • 1. A comparison of the Xenopus laevis oocyte acetylcholinesterase with the muscle and brain enzyme suggests variations at the post-translational level.
    Moya MA; Fuentes ME; Inestrosa NC
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1991; 98(2-3):299-305. PubMed ID: 1676945
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acetylcholinesterase activity of Xenopus laevis oocytes.
    Gundersen CB; Miledi R
    Neuroscience; 1983 Dec; 10(4):1487-95. PubMed ID: 6664498
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Purification and properties of the membrane-bound form of acetylcholinesterase from chicken brain. Evidence for two distinct polypeptide chains.
    Rotundo RL
    J Biol Chem; 1984 Nov; 259(21):13186-94. PubMed ID: 6208193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biochemical studies of the actions of ethanol on acetylcholinesterase activity: ethanol-enzyme-solvent interaction.
    Shin S; Wu P; Chen CH
    Int J Biochem; 1991; 23(2):169-74. PubMed ID: 1999262
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Post-translational modifications of Drosophila acetylcholinesterase. In vitro mutagenesis and expression in Xenopus oocytes.
    Mutero A; Fournier D
    J Biol Chem; 1992 Jan; 267(3):1695-700. PubMed ID: 1730712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preferential inhibition of acetylcholinesterase molecular forms in rat brain.
    Ogane N; Giacobini E; Messamore E
    Neurochem Res; 1992 May; 17(5):489-95. PubMed ID: 1528356
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Absence of substrate inhibition and freezing-inactivation of the mosquito acetylcholinesterase are caused by alterations of hydrophobic interactions.
    Dary O; Wedding RT
    Biochim Biophys Acta; 1990 May; 1039(1):103-9. PubMed ID: 1972336
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Developmental regulation of mouse brain monomeric acetylcholinesterase.
    Moreno RD; Campos FO; Dajas F; Inestrosa NC
    Int J Dev Neurosci; 1998 Apr; 16(2):123-34. PubMed ID: 9762585
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensitivity of acetylcholinesterase molecular forms to inhibition by high MgCl2 concentration.
    Inestrosa NC; Pérez CA; Simpfendorfer RW
    Biochim Biophys Acta; 1994 Oct; 1208(2):286-93. PubMed ID: 7947960
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Overexpressed monomeric human acetylcholinesterase induces subtle ultrastructural modifications in developing neuromuscular junctions of Xenopus laevis embryos.
    Seidman S; Aziz-Aloya RB; Timberg R; Loewenstein Y; Velan B; Shafferman A; Liao J; Norgaard-Pedersen B; Brodbeck U; Soreq H
    J Neurochem; 1994 May; 62(5):1670-81. PubMed ID: 8158119
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibitory effect of suberogorgin on acetylcholinesterase.
    Peng WD; Xu SB; Peng X
    Zhongguo Yao Li Xue Bao; 1996 Jul; 17(4):369-72. PubMed ID: 9812727
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alkaline treatment of muscle microsomes releases amphiphilic and hydrophilic forms of acetylcholinesterase.
    Moya-Quiles MR; Villalba-Sánchez J; Muñoz-Delgado E; Vidal CJ
    Biochim Biophys Acta; 1992 May; 1121(1-2):88-96. PubMed ID: 1599955
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coinjection of Xenopus oocytes with cDNA-produced and native mRNAs: a molecular biological approach to the tissue-specific processing of human cholinesterases.
    Seidman S; Soreq H
    Int Rev Neurobiol; 1990; 32():107-39. PubMed ID: 2079403
    [No Abstract]   [Full Text] [Related]  

  • 14. The effects of ethanol on the structural stability of acetylcholine receptor and the activity of various molecular forms of acetylcholinesterase.
    Baker GM; Chen CH
    Biochim Biophys Acta; 1989 Sep; 992(3):333-40. PubMed ID: 2775789
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acetylcholinesterase from the skeletal muscle of the lamprey Petromyzon marinus exists in globular and asymmetric forms.
    Pezzementi L; Reinheimer EJ; Pezzementi ML
    J Neurochem; 1987 Jun; 48(6):1753-60. PubMed ID: 2883257
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Variations in acetylcholinesterase from brain and muscle of a freshwater air-breathing teleost, Heteropneustes fossilis.
    Ratha BK; Ramanujan SN
    Acta Biochim Biophys Hung; 1986; 21(4):381-90. PubMed ID: 3109182
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chimeric human cholinesterase. Identification of interaction sites responsible for recognition of acetyl- or butyrylcholinesterase-specific ligands.
    Loewenstein Y; Gnatt A; Neville LF; Soreq H
    J Mol Biol; 1993 Nov; 234(2):289-96. PubMed ID: 8230213
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of acetylcholinesterase induced by basic polypeptide-coated latex beads in cultured Xenopus muscle cells.
    Peng HB; Gao KX; Xie MZ; Zhao DY
    Dev Biol; 1988 Jun; 127(2):452-5. PubMed ID: 3378675
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Are soluble and membrane-bound rat brain acetylcholinesterase different?
    Andres C; el Mourabit M; Stutz C; Mark J; Waksman A
    Neurochem Res; 1990 Nov; 15(11):1065-72. PubMed ID: 2089266
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Post-translational processing in Xenopus oocytes includes carboxyl-terminal amidation.
    Bendig MM
    J Biol Chem; 1986 Sep; 261(26):11935-7. PubMed ID: 3745173
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.