These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 16769696)

  • 1. Genome comparison in silico in Neisseria suggests integration of filamentous bacteriophages by their own transposase.
    Kawai M; Uchiyama I; Kobayashi I
    DNA Res; 2005; 12(6):389-401. PubMed ID: 16769696
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of the filamentous bacteriophage genomes integrated into Neisseria gonorrhoeae FA1090 chromosome.
    Piekarowicz A; Majchrzak M; Kłyz A; Adamczyk-Popławska M
    Pol J Microbiol; 2006; 55(4):251-60. PubMed ID: 17416061
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Meningococcal Disease-Associated Prophage-Like Elements Are Present in Neisseria gonorrhoeae and Some Commensal Neisseria Species.
    Al Suwayyid BA; Rankine-Wilson L; Speers DJ; Wise MJ; Coombs GW; Kahler CM
    Genome Biol Evol; 2020 Feb; 12(2):3938-3950. PubMed ID: 32031617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of the dsDNA prophage sequences in the genome of Neisseria gonorrhoeae and visualization of productive bacteriophage.
    Piekarowicz A; Kłyz A; Majchrzak M; Adamczyk-Popławska M; Maugel TK; Stein DC
    BMC Microbiol; 2007 Jul; 7():66. PubMed ID: 17615066
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative overview of the genomic and genetic differences between the pathogenic Neisseria strains and species.
    Snyder LA; Davies JK; Ryan CS; Saunders NJ
    Plasmid; 2005 Nov; 54(3):191-218. PubMed ID: 16024078
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complete sequence determination combined with analysis of transposition/site-specific recombination events to explain genetic organization of IncP-7 TOL plasmid pWW53 and related mobile genetic elements.
    Yano H; Garruto CE; Sota M; Ohtsubo Y; Nagata Y; Zylstra GJ; Williams PA; Tsuda M
    J Mol Biol; 2007 May; 369(1):11-26. PubMed ID: 17408691
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mu-like prophage strong gyrase site sequences: analysis of properties required for promoting efficient mu DNA replication.
    Oram M; Pato ML
    J Bacteriol; 2004 Jul; 186(14):4575-84. PubMed ID: 15231790
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of MDAΦ, a temperate filamentous bacteriophage of Neisseria meningitidis.
    Meyer J; Brissac T; Frapy E; Omer H; Euphrasie D; Bonavita A; Nassif X; Bille E
    Microbiology (Reading); 2016 Feb; 162(2):268-282. PubMed ID: 26602366
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transposition and target specificity of the typical IS30 family element IS1655 from Neisseria meningitidis.
    Kiss J; Nagy Z; Tóth G; Kiss GB; Jakab J; Chandler M; Olasz F
    Mol Microbiol; 2007 Mar; 63(6):1731-47. PubMed ID: 17367392
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Association of host proteins with the broad host range filamentous phage NgoΦ6 of Neisseria gonorrhoeae.
    Piekarowicz A; Kłyż A; Adamczyk-Popławska M; Stein DC
    PLoS One; 2020; 15(10):e0240579. PubMed ID: 33057372
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How genomes rearrange: genome comparison within bacteria Neisseria suggests roles for mobile elements in formation of complex genome polymorphisms.
    Kawai M; Nakao K; Uchiyama I; Kobayashi I
    Gene; 2006 Nov; 383():52-63. PubMed ID: 16949772
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genomic Diversity and Chromosomal Rearrangements in
    Shaskolskiy B; Kravtsov D; Kandinov I; Dementieva E; Gryadunov D
    Int J Mol Sci; 2022 Dec; 23(24):. PubMed ID: 36555284
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Host recognition and integration of filamentous phage phiRSM in the phytopathogen, Ralstonia solanacearum.
    Askora A; Kawasaki T; Usami S; Fujie M; Yamada T
    Virology; 2009 Feb; 384(1):69-76. PubMed ID: 19059619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. piggyBac-like elements in the tobacco budworm, Heliothis virescens (Fabricius).
    Wang J; Ren X; Miller TA; Park Y
    Insect Mol Biol; 2006 Aug; 15(4):435-43. PubMed ID: 16907830
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prophages and bacterial genomics: what have we learned so far?
    Casjens S
    Mol Microbiol; 2003 Jul; 49(2):277-300. PubMed ID: 12886937
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of the Pseudomonas putida mobile genetic element ISPpu10: an occupant of repetitive extragenic palindromic sequences.
    Ramos-González MI; Campos MJ; Ramos JL; Espinosa-Urgel M
    J Bacteriol; 2006 Jan; 188(1):37-44. PubMed ID: 16352819
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Living in a changing environment: insights into host adaptation in Neisseria meningitidis from comparative genomics.
    Schoen C; Joseph B; Claus H; Vogel U; Frosch M
    Int J Med Microbiol; 2007 Nov; 297(7-8):601-13. PubMed ID: 17572149
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional comparison of the transposition core machineries of phage Mu and Haemophilus influenzae Mu-like prophage Hin-Mu reveals interchangeable components.
    Saariaho AH; Lamberg A; Elo S; Savilahti H
    Virology; 2005 Jan; 331(1):6-19. PubMed ID: 15582649
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transposon-like Correia elements: structure, distribution and genetic exchange between pathogenic Neisseria sp.
    Buisine N; Tang CM; Chalmers R
    FEBS Lett; 2002 Jul; 522(1-3):52-8. PubMed ID: 12095618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of Prophages and Their Host Ranges in Pathogenic and Commensal
    Orazi G; Collins AJ; Whitaker RJ
    mSystems; 2022 Jun; 7(3):e0008322. PubMed ID: 35418239
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.