These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

355 related articles for article (PubMed ID: 16769731)

  • 1. Root structure and functioning for efficient acquisition of phosphorus: Matching morphological and physiological traits.
    Lambers H; Shane MW; Cramer MD; Pearse SJ; Veneklaas EJ
    Ann Bot; 2006 Oct; 98(4):693-713. PubMed ID: 16769731
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plant adaptations to severely phosphorus-impoverished soils.
    Lambers H; Martinoia E; Renton M
    Curr Opin Plant Biol; 2015 Jun; 25():23-31. PubMed ID: 25912783
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tradeoffs among root morphology, exudation and mycorrhizal symbioses for phosphorus-acquisition strategies of 16 crop species.
    Wen Z; Li H; Shen Q; Tang X; Xiong C; Li H; Pang J; Ryan MH; Lambers H; Shen J
    New Phytol; 2019 Jul; 223(2):882-895. PubMed ID: 30932187
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Root morphological and physiological traits are committed to the phosphorus acquisition of the desert plants in phosphorus-deficient soils.
    Gao Y; Zhang Z; Zeng F; Ma X
    BMC Plant Biol; 2023 Apr; 23(1):188. PubMed ID: 37032339
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physiological and molecular alterations in plants exposed to high [CO2] under phosphorus stress.
    Pandey R; Zinta G; AbdElgawad H; Ahmad A; Jain V; Janssens IA
    Biotechnol Adv; 2015; 33(3-4):303-16. PubMed ID: 25797341
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Convergence of a specialized root trait in plants from nutrient-impoverished soils: phosphorus-acquisition strategy in a nonmycorrhizal cactus.
    Abrahão A; Lambers H; Sawaya AC; Mazzafera P; Oliveira RS
    Oecologia; 2014 Oct; 176(2):345-55. PubMed ID: 25135179
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Root and leaf traits reflect distinct resource acquisition strategies in tropical lianas and trees.
    Collins CG; Wright SJ; Wurzburger N
    Oecologia; 2016 Apr; 180(4):1037-47. PubMed ID: 26254258
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Maize, wheat, and soybean root traits depend upon soil phosphorus fertility and mycorrhizal status.
    Han J; Zhang Y; Xi H; Zeng J; Peng Z; Ali G; Liu Y
    Mycorrhiza; 2023 Nov; 33(5-6):359-368. PubMed ID: 37821597
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mineral nutrition of campos rupestres plant species on contrasting nutrient-impoverished soil types.
    Oliveira RS; Galvão HC; de Campos MCR; Eller CB; Pearse SJ; Lambers H
    New Phytol; 2015 Feb; 205(3):1183-1194. PubMed ID: 25425486
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Soil nitrogen, and not phosphorus, promotes cluster-root formation in a South American Proteaceae, Embothrium coccineum.
    Piper FI; Baeza G; Zúñiga-Feest A; Fajardo A
    Am J Bot; 2013 Dec; 100(12):2328-38. PubMed ID: 24249789
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plant nutrient-acquisition strategies change with soil age.
    Lambers H; Raven JA; Shaver GR; Smith SE
    Trends Ecol Evol; 2008 Feb; 23(2):95-103. PubMed ID: 18191280
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving crop nutrient efficiency through root architecture modifications.
    Li X; Zeng R; Liao H
    J Integr Plant Biol; 2016 Mar; 58(3):193-202. PubMed ID: 26460087
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical evidence for the functional benefit of root cortical aerenchyma in soils with low phosphorus availability.
    Postma JA; Lynch JP
    Ann Bot; 2011 Apr; 107(5):829-41. PubMed ID: 20971728
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Matching roots to their environment.
    White PJ; George TS; Gregory PJ; Bengough AG; Hallett PD; McKenzie BM
    Ann Bot; 2013 Jul; 112(2):207-22. PubMed ID: 23821619
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Root morphological and physiological traits and arbuscular mycorrhizal fungi shape phosphorus-acquisition strategies of 12 vegetable species.
    Pu Z; Zhang R; Wang H; Li Q; Zhang J; Wang XX
    Front Plant Sci; 2023; 14():1150832. PubMed ID: 37223810
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneously maximizing root/mycorrhizal growth and phosphorus uptake by cotton plants by optimizing water and phosphorus management.
    Mai W; Xue X; Feng G; Tian C
    BMC Plant Biol; 2018 Dec; 18(1):334. PubMed ID: 30518320
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adenanthos species (Proteaceae) in phosphorus-impoverished environments use a variety of phosphorus-acquisition strategies and achieve high-phosphorus-use efficiency.
    Shen Q; Ranathunge K; Lambers H; Finnegan PM
    Ann Bot; 2024 Apr; 133(3):483-494. PubMed ID: 38198749
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of genetically modified crops and their management on soil microbially mediated plant nutrient transformations.
    Motavalli PP; Kremer RJ; Fang M; Means NE
    J Environ Qual; 2004; 33(3):816-24. PubMed ID: 15224915
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Costs of acquiring phosphorus by vascular land plants: patterns and implications for plant coexistence.
    Raven JA; Lambers H; Smith SE; Westoby M
    New Phytol; 2018 Mar; 217(4):1420-1427. PubMed ID: 29292829
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phenotypic plasticity of the maize root system in response to heterogeneous nitrogen availability.
    Yu P; White PJ; Hochholdinger F; Li C
    Planta; 2014 Oct; 240(4):667-78. PubMed ID: 25143250
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.