These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
294 related articles for article (PubMed ID: 16769910)
1. Bone morphogenic protein-4 induces hypertension in mice: role of noggin, vascular NADPH oxidases, and impaired vasorelaxation. Miriyala S; Gongora Nieto MC; Mingone C; Smith D; Dikalov S; Harrison DG; Jo H Circulation; 2006 Jun; 113(24):2818-25. PubMed ID: 16769910 [TBL] [Abstract][Full Text] [Related]
2. Bone morphogenic protein 4 produced in endothelial cells by oscillatory shear stress induces monocyte adhesion by stimulating reactive oxygen species production from a nox1-based NADPH oxidase. Sorescu GP; Song H; Tressel SL; Hwang J; Dikalov S; Smith DA; Boyd NL; Platt MO; Lassègue B; Griendling KK; Jo H Circ Res; 2004 Oct; 95(8):773-9. PubMed ID: 15388638 [TBL] [Abstract][Full Text] [Related]
4. Bone morphogenic protein antagonists are coexpressed with bone morphogenic protein 4 in endothelial cells exposed to unstable flow in vitro in mouse aortas and in human coronary arteries: role of bone morphogenic protein antagonists in inflammation and atherosclerosis. Chang K; Weiss D; Suo J; Vega JD; Giddens D; Taylor WR; Jo H Circulation; 2007 Sep; 116(11):1258-66. PubMed ID: 17785623 [TBL] [Abstract][Full Text] [Related]
5. Bone morphogenic protein-4 impairs endothelial function through oxidative stress-dependent cyclooxygenase-2 upregulation: implications on hypertension. Wong WT; Tian XY; Chen Y; Leung FP; Liu L; Lee HK; Ng CF; Xu A; Yao X; Vanhoutte PM; Tipoe GL; Huang Y Circ Res; 2010 Oct; 107(8):984-91. PubMed ID: 20724703 [TBL] [Abstract][Full Text] [Related]
6. Roles of endothelial oxidases in endothelium-derived hyperpolarizing factor responses in mice. Takaki A; Morikawa K; Murayama Y; Yamagishi H; Hosoya M; Ohashi J; Shimokawa H J Cardiovasc Pharmacol; 2008 Dec; 52(6):510-7. PubMed ID: 19034034 [TBL] [Abstract][Full Text] [Related]
7. Inhibition of bone morphogenic protein 4 restores endothelial function in db/db diabetic mice. Zhang Y; Liu J; Tian XY; Wong WT; Chen Y; Wang L; Luo J; Cheang WS; Lau CW; Kwan KM; Wang N; Yao X; Huang Y Arterioscler Thromb Vasc Biol; 2014 Jan; 34(1):152-9. PubMed ID: 24202302 [TBL] [Abstract][Full Text] [Related]
8. NADPH oxidase accounts for enhanced superoxide production and impaired endothelium-dependent smooth muscle relaxation in BKbeta1-/- mice. Oelze M; Warnholtz A; Faulhaber J; Wenzel P; Kleschyov AL; Coldewey M; Hink U; Pongs O; Fleming I; Wassmann S; Meinertz T; Ehmke H; Daiber A; Münzel T Arterioscler Thromb Vasc Biol; 2006 Aug; 26(8):1753-9. PubMed ID: 16763163 [TBL] [Abstract][Full Text] [Related]
9. Polyphenols restore endothelial function in DOCA-salt hypertension: role of endothelin-1 and NADPH oxidase. Jiménez R; López-Sepúlveda R; Kadmiri M; Romero M; Vera R; Sánchez M; Vargas F; O'Valle F; Zarzuelo A; Dueñas M; Santos-Buelga C; Duarte J Free Radic Biol Med; 2007 Aug; 43(3):462-73. PubMed ID: 17602962 [TBL] [Abstract][Full Text] [Related]
10. High pressure induces superoxide production in isolated arteries via protein kinase C-dependent activation of NAD(P)H oxidase. Ungvari Z; Csiszar A; Huang A; Kaminski PM; Wolin MS; Koller A Circulation; 2003 Sep; 108(10):1253-8. PubMed ID: 12874194 [TBL] [Abstract][Full Text] [Related]
11. Anti-LOX-1 rescues endothelial function in coronary arterioles in atherosclerotic ApoE knockout mice. Xu X; Gao X; Potter BJ; Cao JM; Zhang C Arterioscler Thromb Vasc Biol; 2007 Apr; 27(4):871-7. PubMed ID: 17272755 [TBL] [Abstract][Full Text] [Related]
12. Rapid reversal of endothelial dysfunction in hypercholesterolemic apolipoprotein E-null mice by recombinant apolipoprotein A-I(Milano)-phospholipid complex. Kaul S; Coin B; Hedayiti A; Yano J; Cercek B; Chyu KY; Shah PK J Am Coll Cardiol; 2004 Sep; 44(6):1311-9. PubMed ID: 15364338 [TBL] [Abstract][Full Text] [Related]
13. Role of gp91phox-containing NADPH oxidase in the deoxycorticosterone acetate-salt-induced hypertension. Fujii A; Nakano D; Katsuragi M; Ohkita M; Takaoka M; Ohno Y; Matsumura Y Eur J Pharmacol; 2006 Dec; 552(1-3):131-4. PubMed ID: 17064681 [TBL] [Abstract][Full Text] [Related]
14. Increased NAD(P)H oxidase-mediated superoxide production in renovascular hypertension: evidence for an involvement of protein kinase C. Heitzer T; Wenzel U; Hink U; Krollner D; Skatchkov M; Stahl RA; MacHarzina R; Bräsen JH; Meinertz T; Münzel T Kidney Int; 1999 Jan; 55(1):252-60. PubMed ID: 9893134 [TBL] [Abstract][Full Text] [Related]
15. Red wine polyphenols prevent angiotensin II-induced hypertension and endothelial dysfunction in rats: role of NADPH oxidase. Sarr M; Chataigneau M; Martins S; Schott C; El Bedoui J; Oak MH; Muller B; Chataigneau T; Schini-Kerth VB Cardiovasc Res; 2006 Sep; 71(4):794-802. PubMed ID: 16822492 [TBL] [Abstract][Full Text] [Related]
16. IL-6 deficiency protects against angiotensin II induced endothelial dysfunction and hypertrophy. Schrader LI; Kinzenbaw DA; Johnson AW; Faraci FM; Didion SP Arterioscler Thromb Vasc Biol; 2007 Dec; 27(12):2576-81. PubMed ID: 17962626 [TBL] [Abstract][Full Text] [Related]
17. Adventitial application of the NADPH oxidase inhibitor apocynin in vivo reduces neointima formation and endothelial dysfunction in rabbits. Chan EC; Datla SR; Dilley R; Hickey H; Drummond GR; Dusting GJ Cardiovasc Res; 2007 Sep; 75(4):710-8. PubMed ID: 17659266 [TBL] [Abstract][Full Text] [Related]
18. Homocysteine stimulates NADPH oxidase-mediated superoxide production leading to endothelial dysfunction in rats. Edirimanne VE; Woo CW; Siow YL; Pierce GN; Xie JY; O K Can J Physiol Pharmacol; 2007 Dec; 85(12):1236-47. PubMed ID: 18066125 [TBL] [Abstract][Full Text] [Related]
19. Increased endothelial tetrahydrobiopterin synthesis by targeted transgenic GTP-cyclohydrolase I overexpression reduces endothelial dysfunction and atherosclerosis in ApoE-knockout mice. Alp NJ; McAteer MA; Khoo J; Choudhury RP; Channon KM Arterioscler Thromb Vasc Biol; 2004 Mar; 24(3):445-50. PubMed ID: 14707037 [TBL] [Abstract][Full Text] [Related]
20. Beneficial effect of propofol on arterial adenosine triphosphate-sensitive K+ channel function impaired by thromboxane. Haba M; Kinoshita H; Matsuda N; Azma T; Hama-Tomioka K; Hatakeyama N; Yamazaki M; Hatano Y Anesthesiology; 2009 Aug; 111(2):279-86. PubMed ID: 19568163 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]