These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
102 related articles for article (PubMed ID: 16770044)
1. Gold ultra-microelectrode arrays: application to the steady-state voltammetry of hydroxide ion in aqueous solution. Ordeig O; Banks CE; Davies TJ; del Campo FJ; Muñoz FX; Compton RG Anal Sci; 2006 May; 22(5):679-83. PubMed ID: 16770044 [TBL] [Abstract][Full Text] [Related]
2. Why 'the bigger the better' is not always the case when utilising microelectrode arrays: high density vs. low density arrays for the electroanalytical sensing of chromium(VI). Hood SJ; Kampouris DK; Kadara RO; Jenkinson N; del Campo FJ; Muñoz FX; Banks CE Analyst; 2009 Nov; 134(11):2301-5. PubMed ID: 19838419 [TBL] [Abstract][Full Text] [Related]
3. Boron-doped diamond microdisc arrays: electrochemical characterisation and their use as a substrate for the production of microelectrode arrays of diverse metals (Ag, Au, Cu)via electrodeposition. Simm AO; Banks CE; Ward-Jones S; Davies TJ; Lawrence NS; Jones TG; Jiang L; Compton RG Analyst; 2005 Sep; 130(9):1303-11. PubMed ID: 16096678 [TBL] [Abstract][Full Text] [Related]
4. Steady-state voltammetry of hydroxide ion oxidation in aqueous solutions containing ammonia. Daniele S; Baldo MA; Bragato C; Abdelsalam ME; Denuault G Anal Chem; 2002 Jul; 74(14):3290-6. PubMed ID: 12139031 [TBL] [Abstract][Full Text] [Related]
5. High throughput screening of lead utilising disposable screen printed shallow recessed microelectrode arrays. Hood SJ; Kadara RO; Kampouris DK; Banks CE Analyst; 2010 Jan; 135(1):76-9. PubMed ID: 20024184 [TBL] [Abstract][Full Text] [Related]
6. Voltammetric characterisation of silicon-based microelectrode arrays and their application to mercury-free stripping voltammetry of copper ions. Berduque A; Lanyon YH; Beni V; Herzog G; Watson YE; Rodgers K; Stam F; Alderman J; Arrigan DW Talanta; 2007 Feb; 71(3):1022-30. PubMed ID: 19071408 [TBL] [Abstract][Full Text] [Related]
7. Electrochemical quartz crystal microbalance characterization of I(-) and its amperometric detection by microelectrode. Zhang W; Zha H; Yao B; Zhang C; Zhou X; Zhong S Talanta; 1998 Aug; 46(4):711-6. PubMed ID: 18967196 [TBL] [Abstract][Full Text] [Related]
8. Fabrication of an optoelectrochemical microring array. Szunerits S; Walt DR Anal Chem; 2002 Apr; 74(7):1718-23. PubMed ID: 12033265 [TBL] [Abstract][Full Text] [Related]
9. Investigating the concept of diffusional independence. Potential step transients at nano- and micro-electrode arrays: theory and experiment. Menshykau D; Huang XJ; Rees NV; del Campo FJ; Muñoz FX; Compton RG Analyst; 2009 Feb; 134(2):343-8. PubMed ID: 19173060 [TBL] [Abstract][Full Text] [Related]
10. Electrochemical behaviour and voltammetric sensitivity at arrays of nanoscale interfaces between immiscible liquids. Rimboud M; Hart RD; Becker T; Arrigan DW Analyst; 2011 Nov; 136(22):4674-81. PubMed ID: 21858328 [TBL] [Abstract][Full Text] [Related]
11. Ion-transfer voltammetric behavior of propranolol at nanoscale liquid-liquid interface arrays. Liu Y; Strutwolf J; Arrigan DW Anal Chem; 2015 Apr; 87(8):4487-94. PubMed ID: 25815423 [TBL] [Abstract][Full Text] [Related]
12. Oxidation of hydroxide ions in weak basic solutions using boron-doped diamond electrodes: effect of the buffer capacity. Irkham ; Einaga Y Analyst; 2019 Jul; 144(15):4499-4504. PubMed ID: 31172150 [TBL] [Abstract][Full Text] [Related]
13. Spirally oriented Au microelectrode array sensor for detection of Hg (II). Huan TN; Hung le Q; Ha VT; Anh NH; Van Khai T; Shim KB; Chung H Talanta; 2012 May; 94():284-8. PubMed ID: 22608449 [TBL] [Abstract][Full Text] [Related]
14. Hydroxide Ion Oxidation in Aqueous Solutions Using Boron-Doped Diamond Electrodes. Irkham ; Watanabe T; Einaga Y Anal Chem; 2017 Jul; 89(13):7139-7144. PubMed ID: 28621920 [TBL] [Abstract][Full Text] [Related]
15. Electrochemical dopamine sensor using a nanoporous gold microelectrode: a proof-of-concept study for the detection of dopamine release by scanning electrochemical microscopy. Sáenz HSC; Hernández-Saravia LP; Selva JSG; Sukeri A; Espinoza-Montero PJ; Bertotti M Mikrochim Acta; 2018 Jul; 185(8):367. PubMed ID: 29987397 [TBL] [Abstract][Full Text] [Related]
16. Cavity transport effects in generator-collector electrochemical analysis of nitrobenzene. Lewis GE; Dale SE; Kasprzyk-Hordern B; Lubben AT; Barnes EO; Compton RG; Marken F Phys Chem Chem Phys; 2014 Sep; 16(35):18966-73. PubMed ID: 25092468 [TBL] [Abstract][Full Text] [Related]
17. Development of a Microelectrode Array Sensing Platform for Combination Electrochemical and Spectrochemical Aqueous Ion Testing. Gardner RD; Zhou A; Zufelt NA Sens Actuators B Chem; 2009 Feb; 136(1):177-185. PubMed ID: 20130752 [TBL] [Abstract][Full Text] [Related]
18. The use of optical fiber bundles combined with electrochemistry for chemical imaging. Szunerits S; Walt DR Chemphyschem; 2003 Feb; 4(2):186-92. PubMed ID: 12619418 [TBL] [Abstract][Full Text] [Related]
19. Highly selective and sensitive determination of dopamine using Nafion coated microelectrode arrays. Zhou S; Liu C; Song Y; Cai X J Nanosci Nanotechnol; 2013 Feb; 13(2):1598-601. PubMed ID: 23646689 [TBL] [Abstract][Full Text] [Related]
20. Nanostructured Gold Microelectrode Array for Ultrasensitive Detection of Heavy Metal Contamination. Podešva P; Gablech I; Neužil P Anal Chem; 2018 Jan; 90(2):1161-1167. PubMed ID: 29192490 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]