BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 1677010)

  • 1. Organization of midbrain catecholamine-containing nuclei and their projections to the striatum in the North American opossum, Didelphis virginiana.
    Hazlett JC; Ho RH; Martin GF
    J Comp Neurol; 1991 Apr; 306(4):585-601. PubMed ID: 1677010
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Organization of striatopallidal, striatonigral, and nigrostriatal projections in the macaque.
    Hedreen JC; DeLong MR
    J Comp Neurol; 1991 Feb; 304(4):569-95. PubMed ID: 2013650
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of catecholaminergic projections to the spinal cord in the North American opossum, Didelphis virginiana.
    Pindzola RR; Ho RH; Martin GF
    J Comp Neurol; 1990 Apr; 294(3):399-417. PubMed ID: 1971285
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ventral mesencephalic neurons containing both cholecystokinin- and tyrosine hydroxylase-like immunoreactivities project to forebrain regions.
    Seroogy KB; Dangaran K; Lim S; Haycock JW; Fallon JH
    J Comp Neurol; 1989 Jan; 279(3):397-414. PubMed ID: 2563737
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Forebrain projections from cholecystokininlike-immunoreactive neurons in the rat midbrain.
    Seroogy KB; Fallon JH
    J Comp Neurol; 1989 Jan; 279(3):415-35. PubMed ID: 2918078
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The inferior olivary nucleus of the opossum (Didelphis marsupialis virginiana), its organization and connections.
    Martin GF; Dom R; King JS; RoBards M; Watson CR
    J Comp Neurol; 1975 Apr; 160(4):507-33. PubMed ID: 1123465
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Projections of medial terminal accessory optic nucleus, ventral tegmental nuclei, and substantia nigra of rabbit and rat as studied by retrograde axonal transport of horseradish peroxidase.
    Giolli RA; Blanks RH; Torigoe Y; Williams DD
    J Comp Neurol; 1985 Feb; 232(1):99-116. PubMed ID: 3973086
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Midbrain dopaminergic neurons (nuclei A8, A9, and A10): three-dimensional reconstruction in the rat.
    German DC; Manaye KF
    J Comp Neurol; 1993 May; 331(3):297-309. PubMed ID: 8514911
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dopaminergic neurons in rat ventral midbrain express brain-derived neurotrophic factor and neurotrophin-3 mRNAs.
    Seroogy KB; Lundgren KH; Tran TM; Guthrie KM; Isackson PJ; Gall CM
    J Comp Neurol; 1994 Apr; 342(3):321-34. PubMed ID: 7912699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The paleostriatal system of Caiman crocodilus.
    Brauth SE; Kitt CA
    J Comp Neurol; 1980 Feb; 189(3):437-65. PubMed ID: 7372857
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Organization of ventral tegmental area projections to the ventral tegmental area-nigral complex in the rat.
    Ferreira JG; Del-Fava F; Hasue RH; Shammah-Lagnado SJ
    Neuroscience; 2008 Apr; 153(1):196-213. PubMed ID: 18358616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aromatic L-amino acid decarboxylase-immunoreactive structures in human midbrain, pons, and medulla.
    Kitahama K; Ikemoto K; Jouvet A; Araneda S; Nagatsu I; Raynaud B; Nishimura A; Nishi K; Niwa S
    J Chem Neuroanat; 2009 Oct; 38(2):130-40. PubMed ID: 19589383
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distributions of tyrosine hydroxylase-, dopamine-beta-hydroxylase-, and phenylethanolamine-N-methyltransferase-immunoreactive neurons in the brain of the hamster (Mesocricetus auratus).
    Vincent SR
    J Comp Neurol; 1988 Feb; 268(4):584-99. PubMed ID: 2895779
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of forebrain lesions in the neonatal rat: survival of midbrain dopaminergic neurons and the crossed nigrostriatal projection.
    Jaeger CB; Joh TH; Reis DJ
    J Comp Neurol; 1983 Jul; 218(1):74-90. PubMed ID: 6886067
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Localization of serotonin, tyrosine hydroxylase, and leu-enkephalin immunoreactive cells in the brainstem of the horn shark, Heterodontus francisci.
    Stuesse SL; Cruce WL; Northcutt RG
    J Comp Neurol; 1991 Jun; 308(2):277-92. PubMed ID: 1679768
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Organization of the ascending striatal afferents in monkeys.
    Szabo J
    J Comp Neurol; 1980 Jan; 189(2):307-21. PubMed ID: 6767756
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dopaminergic cell group A8 in the monkey: anatomical organization and projections to the striatum.
    François C; Yelnik J; Tandé D; Agid Y; Hirsch EC
    J Comp Neurol; 1999 Nov; 414(3):334-47. PubMed ID: 10516600
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nuclear organization of the substantia nigra, ventral tegmental area and retrorubral field of the common marmoset (Callithrix jacchus): A cytoarchitectonic and TH-immunohistochemistry study.
    Cavalcanti JRLP; Pontes ALB; Fiuza FP; Silva KDA; Guzen FP; Lucena EES; Nascimento-Júnior ES; Cavalcante JC; Costa MSMO; Engelberth RCGJ; Cavalcante JS
    J Chem Neuroanat; 2016 Nov; 77():100-109. PubMed ID: 27292410
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Topographic organization of the brainstem afferents to the mediodorsal thalamic nucleus.
    Velayos JL; Reinoso-Suarez F
    J Comp Neurol; 1982 Mar; 206(1):17-27. PubMed ID: 7096629
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ascending projections of the brain stem reticular formation in a nonmammalian vertebrate (the lizard Varanus exanthematicus), with notes on the afferent connections of the forebrain.
    Ten Donkelaar HJ; De Boer-Van Huizen R
    J Comp Neurol; 1981 Aug; 200(4):501-28. PubMed ID: 7263959
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.