These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 16770418)

  • 61. Micromachined transmissive scanning confocal microscope.
    Kwon S; Lee LP
    Opt Lett; 2004 Apr; 29(7):706-8. PubMed ID: 15072365
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Fringe-free, background-free, collinear third-harmonic generation frequency-resolved optical gating measurements for multiphoton microscopy.
    Chadwick R; Spahr E; Squier JA; Durfee CG; Walker BC; Fittinghoff DN
    Opt Lett; 2006 Nov; 31(22):3366-8. PubMed ID: 17072425
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Multiplexed two-photon microscopy of dynamic biological samples with shaped broadband pulses.
    Pillai RS; Boudoux C; Labroille G; Olivier N; Veilleux I; Farge E; Joffre M; Beaurepaire E
    Opt Express; 2009 Jul; 17(15):12741-52. PubMed ID: 19654680
    [TBL] [Abstract][Full Text] [Related]  

  • 64. A compact multiphoton 3D imaging system for recording fast neuronal activity.
    Vucinić D; Sejnowski TJ
    PLoS One; 2007 Aug; 2(8):e699. PubMed ID: 17684546
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Vertical optical sectioning using a magnetically driven confocal microscanner aimed for in vivo clinical imaging.
    Mansoor H; Zeng H; Chen K; Yu Y; Zhao J; Chiao M
    Opt Express; 2011 Dec; 19(25):25161-72. PubMed ID: 22273907
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Measurement of contrast transfer function in super-resolution microscopy using two-color fluorescence dip spectroscopy.
    Iketaki Y; Watanabe T; Bokor N; Omatsu T; Hiraga T; Yamamoto K; Fujii M
    Appl Spectrosc; 2007 Jan; 61(1):6-10. PubMed ID: 17311707
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Continuous fluorescence microphotolysis and correlation spectroscopy using 4Pi microscopy.
    Arkhipov A; Hüve J; Kahms M; Peters R; Schulten K
    Biophys J; 2007 Dec; 93(11):4006-17. PubMed ID: 17704168
    [TBL] [Abstract][Full Text] [Related]  

  • 68. MEMS Actuators for Optical Microendoscopy.
    Qiu Z; Piyawattanametha W
    Micromachines (Basel); 2019 Jan; 10(2):. PubMed ID: 30682852
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Incoherent structured illumination improves optical sectioning and contrast in multiphoton super-resolution microscopy.
    Winter PW; Chandris P; Fischer RS; Wu Y; Waterman CM; Shroff H
    Opt Express; 2015 Feb; 23(4):5327-34. PubMed ID: 25836564
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Two-axis polydimethylsiloxane-based electromagnetic microelectromechanical system scanning mirror for optical coherence tomography.
    Kim S; Lee C; Kim JY; Kim J; Lim G; Kim C
    J Biomed Opt; 2016 Oct; 21(10):106001. PubMed ID: 27731491
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Design and demonstration of multimodal optical scanning microscopy for confocal and two-photon imaging.
    Chun W; Do D; Gweon DG
    Rev Sci Instrum; 2013 Jan; 84(1):013701. PubMed ID: 23387653
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Increased illumination uniformity and reduced photodamage offered by the Lissajous scanning in fiber-optic two-photon endomicroscopy.
    Liang W; Murari K; Zhang Y; Chen Y; Li MJ; Li X
    J Biomed Opt; 2012 Feb; 17(2):021108. PubMed ID: 22463026
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Calculated two-photon fluorescence correction factors for reflective scan engines.
    Sharafutdinova G; Holdsworth J; van Helden D
    Appl Opt; 2010 Mar; 49(8):1472-9. PubMed ID: 20220904
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Two-axis magnetically-driven MEMS scanning catheter for endoscopic high-speed optical coherence tomography.
    Kim KH; Park BH; Maguluri GN; Lee TW; Rogomentich FJ; Bancu MG; Bouma BE; de Boer JF; Bernstein JJ
    Opt Express; 2007 Dec; 15(26):18130-40. PubMed ID: 19551111
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Cooperative 4Pi excitation and detection yields sevenfold sharper optical sections in live-cell microscopy.
    Gugel H; Bewersdorf J; Jakobs S; Engelhardt J; Storz R; Hell SW
    Biophys J; 2004 Dec; 87(6):4146-52. PubMed ID: 15377532
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Multifunctional fluorescence correlation microscope for intracellular and microfluidic measurements.
    Pan X; Foo W; Lim W; Fok MH; Liu P; Yu H; Maruyama I; Wohland T
    Rev Sci Instrum; 2007 May; 78(5):053711. PubMed ID: 17552829
    [TBL] [Abstract][Full Text] [Related]  

  • 77. MEMS Enabled Miniature Two-Photon Microscopy for Biomedical Imaging.
    Yu X; Zhou L; Qi T; Zhao H; Xie H
    Micromachines (Basel); 2023 Feb; 14(2):. PubMed ID: 36838170
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Multidimensional single-molecule imaging in live cells using total-internal-reflection fluorescence microscopy.
    Webb SE; Needham SR; Roberts SK; Martin-Fernandez ML
    Opt Lett; 2006 Jul; 31(14):2157-9. PubMed ID: 16794711
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Portable two-color in vivo flow cytometer for real-time detection of fluorescently-labeled circulating cells.
    Boutrus S; Greiner C; Hwu D; Chan M; Kuperwasser C; Lin CP; Georgakoudi I
    J Biomed Opt; 2007; 12(2):020507. PubMed ID: 17477705
    [TBL] [Abstract][Full Text] [Related]  

  • 80. DySCo: quantitating associations of membrane proteins using two-color single-molecule tracking.
    Dunne PD; Fernandes RA; McColl J; Yoon JW; James JR; Davis SJ; Klenerman D
    Biophys J; 2009 Aug; 97(4):L5-7. PubMed ID: 19686638
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.