These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 16770550)

  • 1. Development of an optimized electrochemical process for subsequent coating of 316 stainless steel for stent applications.
    Haïdopoulos M; Turgeon S; Sarra-Bournet C; Laroche G; Mantovani D
    J Mater Sci Mater Med; 2006 Jul; 17(7):647-57. PubMed ID: 16770550
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro corrosion behavior of bioceramic, metallic, and bioceramic-metallic coated stainless steel dental implants.
    Fathi MH; Salehi M; Saatchi A; Mortazavi V; Moosavi SB
    Dent Mater; 2003 May; 19(3):188-98. PubMed ID: 12628430
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Corrosion resistance of polyurethane-coated nitinol cardiovascular stents.
    Mazumder MM; De S; Trigwell S; Ali N; Mazumder MK; Mehta JL
    J Biomater Sci Polym Ed; 2003; 14(12):1351-62. PubMed ID: 14870939
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Corrosion resistance improvement for 316L stainless steel coronary artery stents by trimethylsilane plasma nanocoatings.
    Eric Jones J; Chen M; Yu Q
    J Biomed Mater Res B Appl Biomater; 2014 Oct; 102(7):1363-74. PubMed ID: 24500866
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atomic layer deposition enhanced grafting of phosphorylcholine on stainless steel for intravascular stents.
    Zhong Q; Yan J; Qian X; Zhang T; Zhang Z; Li A
    Colloids Surf B Biointerfaces; 2014 Sep; 121():238-47. PubMed ID: 25016426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of Ti-C:H coating and plasma nitriding treatment on tribological, electrochemical, and biocompatibility properties of AISI 316L.
    Kao WH; Su YL; Horng JH; Zhang KX
    J Biomater Appl; 2016 Aug; 31(2):215-29. PubMed ID: 27422714
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An experimental study of electrochemical polishing for micro-electro-discharge-machined stainless-steel stents.
    Lappin D; Mohammadi AR; Takahata K
    J Mater Sci Mater Med; 2012 Feb; 23(2):349-56. PubMed ID: 22183790
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface mechanical properties, corrosion resistance, and cytocompatibility of nitrogen plasma-implanted nickel-titanium alloys: a comparative study with commonly used medical grade materials.
    Yeung KW; Poon RW; Chu PK; Chung CY; Liu XY; Lu WW; Chan D; Chan SC; Luk KD; Cheung KM
    J Biomed Mater Res A; 2007 Aug; 82(2):403-14. PubMed ID: 17295246
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electropolishing of stainless steels in a choline chloride based ionic liquid: an electrochemical study with surface characterisation using SEM and atomic force microscopy.
    Abbott AP; Capper G; McKenzie KJ; Glidle A; Ryder KS
    Phys Chem Chem Phys; 2006 Sep; 8(36):4214-21. PubMed ID: 16971989
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Study of bioactive nano-multiplayer films on medical stainless steel fabrication and haemocompatibility].
    Yue L; Zhao H; Yang D; Qi M
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Feb; 25(1):108-12. PubMed ID: 18435269
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Corrosion of stainless steel, nickel-titanium, coated nickel-titanium, and titanium orthodontic wires.
    Kim H; Johnson JW
    Angle Orthod; 1999 Feb; 69(1):39-44. PubMed ID: 10022183
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A manufacturing and annealing protocol to develop a cold-sprayed Fe-316L stainless steel biodegradable stenting material.
    Frattolin J; Roy R; Rajagopalan S; Walsh M; Yue S; Bertrand OF; Mongrain R
    Acta Biomater; 2019 Nov; 99():479-494. PubMed ID: 31449928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantification of fibrinogen adsorption onto 316L stainless steel.
    Gettens RT; Gilbert JL
    J Biomed Mater Res A; 2007 May; 81(2):465-73. PubMed ID: 17133446
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Otto Aufranc Award: enhanced biocompatibility of stainless steel implants by titanium coating and microarc oxidation.
    Lim YW; Kwon SY; Sun DH; Kim YS
    Clin Orthop Relat Res; 2011 Feb; 469(2):330-8. PubMed ID: 20936386
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlling the electrodeposition, morphology and structure of hydroxyapatite coating on 316L stainless steel.
    Thanh DT; Nam PT; Phuong NT; Que le X; Anh NV; Hoang T; Lam TD
    Mater Sci Eng C Mater Biol Appl; 2013 May; 33(4):2037-45. PubMed ID: 23498230
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioactive films on metallic surfaces for osteoconduction.
    Zhang Q; Leng Y; Lu X; Xin R; Yang X; Chen J
    J Biomed Mater Res A; 2009 Feb; 88(2):481-90. PubMed ID: 18306323
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Laser surface alloying of 316L stainless steel coated with a bioactive hydroxyapatite-titanium oxide composite.
    Ghaith el-S; Hodgson S; Sharp M
    J Mater Sci Mater Med; 2015 Feb; 26(2):83. PubMed ID: 25636972
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical characterization of AISI 316L stainless steel in contact with simulated body fluid under infection conditions.
    López DA; Durán A; Ceré SM
    J Mater Sci Mater Med; 2008 May; 19(5):2137-44. PubMed ID: 17999036
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrocoating of stainless steel coronary stents for extended release of paclitaxel.
    Okner R; Oron M; Tal N; Nyska A; Kumar N; Mandler D; Domb AJ
    J Biomed Mater Res A; 2009 Feb; 88(2):427-36. PubMed ID: 18306316
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanosized controlled surface pretreatment of biometallic alloy 316L stainless steel.
    Abdel-Fattah TM; Loftis D; Mahapatro A
    J Biomed Nanotechnol; 2011 Dec; 7(6):794-800. PubMed ID: 22416578
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.