BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 16770684)

  • 1. Incorporation of 3H-thymidine by different prokaryotic groups in relation to temperature and nutrients in a lacustrine ecosystem.
    Boucher D; Richardot M; Thénot A; Debroas D
    Microb Ecol; 2006 Oct; 52(3):399-407. PubMed ID: 16770684
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temperature-driven adaptation of the bacterial community in peat measured by using thymidine and leucine incorporation.
    Ranneklev SB; Bååth E
    Appl Environ Microbiol; 2001 Mar; 67(3):1116-22. PubMed ID: 11229900
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Natural assemblages of marine proteobacteria and members of the Cytophaga-Flavobacter cluster consuming low- and high-molecular-weight dissolved organic matter.
    Cottrell MT; Kirchman DL
    Appl Environ Microbiol; 2000 Apr; 66(4):1692-7. PubMed ID: 10742262
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nutrients and other abiotic factors affecting bacterial communities in an Ohio River (USA).
    Rubin MA; Leff LG
    Microb Ecol; 2007 Aug; 54(2):374-83. PubMed ID: 17308951
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monitoring of soil bacterial community and some inoculated bacteria after prescribed fire in microcosm.
    Song HG; Kim OS; Yoo JJ; Jeon SO; Hong SH; Lee DH; Ahn TS
    J Microbiol; 2004 Dec; 42(4):285-91. PubMed ID: 15650684
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantifying 3H-thymidine incorporation rates by a phylogenetically defined group of marine planktonic bacteria (Bacteriodetes phylum).
    van Mooy BA; Devol AH; Keil RG
    Environ Microbiol; 2004 Oct; 6(10):1061-9. PubMed ID: 15344931
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inorganic phosphorus and nitrogen modify composition and diversity of microbial communities in water of mesotrophic lake.
    Chróst RJ; Adamczewski T; Kalinowska K; Skowrońska A
    Pol J Microbiol; 2009; 58(1):77-90. PubMed ID: 19469290
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid method of determining factors limiting bacterial growth in soil.
    Aldén L; Demoling F; Bååth E
    Appl Environ Microbiol; 2001 Apr; 67(4):1830-8. PubMed ID: 11282640
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of hyperthermia on thymidine salvage as related to DNA synthesis.
    Skog S; He Q; Tribukait B
    Int J Hyperthermia; 1992; 8(1):99-109. PubMed ID: 1545167
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bacterial community dynamics and polycyclic aromatic hydrocarbon degradation during bioremediation of heavily creosote-contaminated soil.
    Viñas M; Sabaté J; Espuny MJ; Solanas AM
    Appl Environ Microbiol; 2005 Nov; 71(11):7008-18. PubMed ID: 16269736
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combined microautoradiography-16S rRNA probe technique for determination of radioisotope uptake by specific microbial cell types in situ.
    Ouverney CC; Fuhrman JA
    Appl Environ Microbiol; 1999 Apr; 65(4):1746-52. PubMed ID: 10103276
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contribution of cytophaga-like bacteria to the potential of turnover of carbon, nitrogen, and phosphorus by bacteria in the rhizosphere of barley (Hordeum vulgare L.).
    Johansen JE; Binnerup SJ
    Microb Ecol; 2002 Apr; 43(3):298-306. PubMed ID: 12037608
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long-term population dynamics and in situ physiology in activated sludge systems with enhanced biological phosphorus removal operated with and without nitrogen removal.
    Lee N; Nielsen PH; Aspegren H; Henze M; Schleifer KH; la Cour Jansen J
    Syst Appl Microbiol; 2003 Jun; 26(2):211-27. PubMed ID: 12866848
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Warming alters coupled carbon and nutrient cycles in experimental streams.
    Williamson TJ; Cross WF; Benstead JP; Gíslason GM; Hood JM; Huryn AD; Johnson PW; Welter JR
    Glob Chang Biol; 2016 Jun; 22(6):2152-64. PubMed ID: 26719040
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular diversity of mesophilic and thermophilic bacteria in a membrane bioreactor determined by fluorescent in situ hybridization with mxaF- and rRNA-targeted probes.
    Dias JC; Silva CM; Mounteer AH; Passos FM; Linardi VR
    J Basic Microbiol; 2003; 43(3):202-9. PubMed ID: 12761771
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monitoring of bacterial community in a coniferous forest soil after a wildfire.
    Kim OS; Yoo JJ; Lee DH; Ahn TS; Song HG
    J Microbiol; 2004 Dec; 42(4):278-84. PubMed ID: 15650683
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bacterial populations colonizing and degrading rice straw in anoxic paddy soil.
    Weber S; Stubner S; Conrad R
    Appl Environ Microbiol; 2001 Mar; 67(3):1318-27. PubMed ID: 11229927
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growth and grazing mortality rates of phylogenetic groups of bacterioplankton in coastal marine environments.
    Yokokawa T; Nagata T
    Appl Environ Microbiol; 2005 Nov; 71(11):6799-807. PubMed ID: 16269712
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphorus limitation of coastal ecosystem processes.
    Sundareshwar PV; Morris JT; Koepfler EK; Fornwalt B
    Science; 2003 Jan; 299(5606):563-5. PubMed ID: 12543975
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biological nitrogen and phosphorus removal and changes in microbial community structure in a membrane bioreactor: effect of different carbon sources.
    Ahmed Z; Lim BR; Cho J; Song KG; Kim KP; Ahn KH
    Water Res; 2008 Jan; 42(1-2):198-210. PubMed ID: 17640701
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.