These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 16770771)

  • 1. Autofluorescence properties of rat cerebellum cortex during postnatal development.
    Croce AC; Pisu MB; Roda E; Avella D; Bernocchi G; Bottiroli G
    Lasers Surg Med; 2006 Jul; 38(6):598-607. PubMed ID: 16770771
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monoamine receptors and immature cerebellum cytoarchitecture after cisplatin injury.
    Roda E; Avella D; Pisu MB; Bernocchi G
    J Chem Neuroanat; 2007 Jan; 33(1):42-52. PubMed ID: 17156972
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proliferation and migration of granule cells in the developing rat cerebellum: cisplatin effects.
    Pisu MB; Roda E; Guioli S; Avella D; Bottone MG; Bernocchi G
    Anat Rec A Discov Mol Cell Evol Biol; 2005 Dec; 287(2):1226-35. PubMed ID: 16247801
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reorganization of the rat cerebellar cortex during postnatal development following cisplatin treatment.
    Avella D; Pisu MB; Roda E; Gravati M; Bernocchi G
    Exp Neurol; 2006 Sep; 201(1):131-43. PubMed ID: 16806181
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Autofluorescence spectrofluorometry of central nervous system (CNS) neuromediators.
    Crespi F; Croce AC; Fiorani S; Masala B; Heidbreder C; Bottiroli G
    Lasers Surg Med; 2004; 34(1):39-47. PubMed ID: 14755423
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Autofluorescence properties of rat liver under hypermetabolic conditions.
    Croce AC; De Simone U; Vairetti M; Ferrigno A; Bottiroli G
    Photochem Photobiol Sci; 2007 Nov; 6(11):1202-9. PubMed ID: 17973053
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Difference in the postnatal development of the layer structures in the phylogenetically different cat cerebellar cortices].
    Nagasaki S; Deura S
    Kaibogaku Zasshi; 1989 Dec; 64(6):539-49. PubMed ID: 2634899
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flavoprotein autofluorescence imaging of neuronal activation in the cerebellar cortex in vivo.
    Reinert KC; Dunbar RL; Gao W; Chen G; Ebner TJ
    J Neurophysiol; 2004 Jul; 92(1):199-211. PubMed ID: 14985415
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human liver autofluorescence: an intrinsic tissue parameter discriminating normal and diseased conditions.
    Croce AC; De Simone U; Freitas I; Boncompagni E; Neri D; Cillo U; Bottiroli G
    Lasers Surg Med; 2010 Jul; 42(5):371-8. PubMed ID: 20583250
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Liver autofluorescence properties in animal model under altered nutritional conditions.
    Croce AC; De Simone U; Vairetti M; Ferrigno A; Boncompagni E; Freitas I; Bottiroli G
    Photochem Photobiol Sci; 2008 Sep; 7(9):1046-53. PubMed ID: 18754051
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flavoprotein autofluorescence imaging in the cerebellar cortex in vivo.
    Reinert KC; Gao W; Chen G; Ebner TJ
    J Neurosci Res; 2007 Nov; 85(15):3221-32. PubMed ID: 17520745
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Birth weight and development of cerebellar cortex.
    Bijlani V; Grewal MS; Rao K
    J Anat; 1980 Jun; 130(Pt 4):769-75. PubMed ID: 7429965
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Naturally occurring alterations of cortical layers surrounding the fissura prima of rat cerebellum.
    Griffin WS; Eriksson MA; del Cerro M; Woodward DJ; Stampfer N
    J Comp Neurol; 1980 Jul; 192(1):109-18. PubMed ID: 7410606
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Autofluorescence detection of tumors in the human lung--spectroscopical measurements in situ, in an in vivo model and in vitro.
    Hüttenberger D; Gabrecht T; Wagnières G; Weber B; Linder A; Foth HJ; Freitag L
    Photodiagnosis Photodyn Ther; 2008 Jun; 5(2):139-47. PubMed ID: 19356645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thyroid hormone level positively regulates NOS and cGMP in the developing rat cerebellum.
    Serfozo Z; de Vente J; Elekes K
    Neuroendocrinology; 2009; 89(3):337-50. PubMed ID: 19229110
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prenatal blockade of Ang II receptors affects neonatal rat hindbrain structure and receptor localization.
    Sánchez SI; Arce ME; Fuentes LB; Ciuffo GM
    Exp Neurol; 2009 Dec; 220(2):246-54. PubMed ID: 19682991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Postnatal development of the cerebellar cortex in the rat. I. The external germinal layer and the transitional molecular layer.
    Altman J
    J Comp Neurol; 1972 Jul; 145(3):353-97. PubMed ID: 4113154
    [No Abstract]   [Full Text] [Related]  

  • 18. Autofluorescence spectroscopy in whole organs with a mobile detector system.
    Hansch A; Sauner D; Hilger I; Böttcher J; Malich A; Frey O; Bräuer R; Kaiser WA
    Acad Radiol; 2004 Nov; 11(11):1229-36. PubMed ID: 15561569
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of complement anaphylatoxin receptors (C3aR, C5aR) in the development of the rat cerebellum.
    Bénard M; Raoult E; Vaudry D; Leprince J; Falluel-Morel A; Gonzalez BJ; Galas L; Vaudry H; Fontaine M
    Mol Immunol; 2008 Aug; 45(14):3767-74. PubMed ID: 18635264
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A quantitative study on the postnatal development of the cerebellar vermis of mouse.
    Haddara MA; Nooreddin MA
    J Comp Neurol; 1966 Oct; 128(2):245-54. PubMed ID: 4165738
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.