These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
750 related articles for article (PubMed ID: 16771335)
1. Preparation of highly active silica-supported Au catalysts for CO oxidation by a solution-based technique. Zhu H; Liang C; Yan W; Overbury SH; Dai S J Phys Chem B; 2006 Jun; 110(22):10842-8. PubMed ID: 16771335 [TBL] [Abstract][Full Text] [Related]
2. Effect of supporting surface layers on catalytic activities of gold nanoparticles in CO oxidation. Yan W; Mahurin SM; Chen B; Overbury SH; Dai S J Phys Chem B; 2005 Aug; 109(32):15489-96. PubMed ID: 16852965 [TBL] [Abstract][Full Text] [Related]
3. Modifications induced by pretreatments on Au/SBA-15 and their influence on the catalytic activity for low temperature CO oxidation. Rombi E; Cutrufello MG; Cannas C; Casu M; Gazzoli D; Occhiuzzi M; Monaci R; Ferino I Phys Chem Chem Phys; 2009 Jan; 11(3):593-602. PubMed ID: 19283278 [TBL] [Abstract][Full Text] [Related]
4. Kinetic evaluation of highly active supported gold catalysts prepared from monolayer-protected clusters: an experimental Michaelis-Menten approach for determining the oxygen binding constant during CO oxidation catalysis. Long CG; Gilbertson JD; Vijayaraghavan G; Stevenson KJ; Pursell CJ; Chandler BD J Am Chem Soc; 2008 Aug; 130(31):10103-15. PubMed ID: 18620389 [TBL] [Abstract][Full Text] [Related]
5. Mesoporous Co3O4 and Au/Co3O4 catalysts for low-temperature oxidation of trace ethylene. Ma CY; Mu Z; Li JJ; Jin YG; Cheng J; Lu GQ; Hao ZP; Qiao SZ J Am Chem Soc; 2010 Mar; 132(8):2608-13. PubMed ID: 20141130 [TBL] [Abstract][Full Text] [Related]
6. Influence of the pore structure of MCM-41 and SBA-15 silica fibers on atomic layer chemical vapor deposition of cobalt carbonyl. Hukkamäki J; Suvanto S; Suvanto M; Pakkanen TT Langmuir; 2004 Nov; 20(23):10288-95. PubMed ID: 15518527 [TBL] [Abstract][Full Text] [Related]
7. Preparation of supported gold nanoparticles by a modified incipient wetness impregnation method. Delannoy L; El Hassan N; Musi A; Le To NN; Krafft JM; Louis C J Phys Chem B; 2006 Nov; 110(45):22471-8. PubMed ID: 17091989 [TBL] [Abstract][Full Text] [Related]
8. Au-Pd supported nanocrystals prepared by a sol immobilisation technique as catalysts for selective chemical synthesis. Lopez-Sanchez JA; Dimitratos N; Miedziak P; Ntainjua E; Edwards JK; Morgan D; Carley AF; Tiruvalam R; Kiely CJ; Hutchings GJ Phys Chem Chem Phys; 2008 Apr; 10(14):1921-30. PubMed ID: 18368185 [TBL] [Abstract][Full Text] [Related]
9. Reaction mechanisms for the CO oxidation on Au/CeO(2) catalysts: activity of substitutional Au(3+)/Au(+) cations and deactivation of supported Au(+) adatoms. Camellone MF; Fabris S J Am Chem Soc; 2009 Aug; 131(30):10473-83. PubMed ID: 19722624 [TBL] [Abstract][Full Text] [Related]
10. Oxidation of CO on gold supported catalysts prepared by laser vaporization: direct evidence of support contribution. Arrii S; Morfin F; Renouprez AJ; Rousset JL J Am Chem Soc; 2004 Feb; 126(4):1199-205. PubMed ID: 14746491 [TBL] [Abstract][Full Text] [Related]
11. Evolution of catalytic activity of Au-Ag bimetallic nanoparticles on mesoporous support for CO oxidation. Wang AQ; Chang CM; Mou CY J Phys Chem B; 2005 Oct; 109(40):18860-7. PubMed ID: 16853427 [TBL] [Abstract][Full Text] [Related]
12. Silica-supported Au nanoparticles decorated by TiO2: formation, morphology, and CO oxidation activity. Horváth A; Beck A; Sárkány A; Stefler G; Varga Z; Geszti O; Tóth L; Guczi L J Phys Chem B; 2006 Aug; 110(31):15417-25. PubMed ID: 16884263 [TBL] [Abstract][Full Text] [Related]
13. Direct vapor phase propylene epoxidation over deposition-precipitation gold-titania catalysts in the Presence of H2/O2: Effects of support, neutralizing agent, and pretreatment. Stangland EE; Taylor B; Andres RP; Delgass WN J Phys Chem B; 2005 Feb; 109(6):2321-30. PubMed ID: 16851226 [TBL] [Abstract][Full Text] [Related]
14. Preparation and comparison of supported gold nanocatalysts on anatase, brookite, rutile, and P25 polymorphs of TiO2 for catalytic oxidation of CO. Yan W; Chen B; Mahurin SM; Schwartz V; Mullins DR; Lupini AR; Pennycook SJ; Dai S; Overbury SH J Phys Chem B; 2005 Jun; 109(21):10676-85. PubMed ID: 16852296 [TBL] [Abstract][Full Text] [Related]
15. Synthesis of silica supported AuCu nanoparticle catalysts and the effects of pretreatment conditions for the CO oxidation reaction. Bauer JC; Mullins D; Li M; Wu Z; Payzant EA; Overbury SH; Dai S Phys Chem Chem Phys; 2011 Feb; 13(7):2571-81. PubMed ID: 21246124 [TBL] [Abstract][Full Text] [Related]
16. New preparation method of gold nanoparticles on SiO2. Zanella R; Sandoval A; Santiago P; Basiuk VA; Saniger JM J Phys Chem B; 2006 May; 110(17):8559-65. PubMed ID: 16640406 [TBL] [Abstract][Full Text] [Related]
17. Solvent-free oxidation of benzyl alcohol using Au-Pd catalysts prepared by sol immobilisation. Dimitratos N; Lopez-Sanchez JA; Morgan D; Carley AF; Tiruvalam R; Kiely CJ; Bethell D; Hutchings GJ Phys Chem Chem Phys; 2009 Jul; 11(25):5142-53. PubMed ID: 19562147 [TBL] [Abstract][Full Text] [Related]
18. Investigation of formaldehyde oxidation over Co3O4-Ce2 and Au/Co3O4-CeO2 catalysts at room temperature: effective removal and determination of reaction mechanism. Ma C; Wang D; Xue W; Dou B; Wang H; Hao Z Environ Sci Technol; 2011 Apr; 45(8):3628-34. PubMed ID: 21375237 [TBL] [Abstract][Full Text] [Related]
19. Catalytically active gold on ordered titania supports. Chen M; Goodman DW Chem Soc Rev; 2008 Sep; 37(9):1860-70. PubMed ID: 18762835 [TBL] [Abstract][Full Text] [Related]
20. Model studies on CO oxidation catalyst systems: titania and gold nanoparticles. Christmann K; Schwede S; Schubert S; Kudernatsch W Chemphyschem; 2010 May; 11(7):1344-63. PubMed ID: 20183844 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]