BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 16771403)

  • 1. Surface characteristics of activated carbons obtained by pyrolysis of plasma pretreated PET.
    Almazán-Almazán MC; Paredes JI; Pérez-Mendoza M; Domingo-García M; Fernández-Morales I; Martínez-Alonso A; López-Garzón FJ
    J Phys Chem B; 2006 Jun; 110(23):11327-33. PubMed ID: 16771403
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lignin--from natural adsorbent to activated carbon: a review.
    Suhas ; Carrott PJ; Ribeiro Carrott MM
    Bioresour Technol; 2007 Sep; 98(12):2301-12. PubMed ID: 17055259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface characterisation of plasma-modified poly(ethylene terephthalate).
    Almazán-Almazán MC; Paredes JI; Pérez-Mendoza M; Domingo-García M; López-Garzón FJ; Martínez-Alonso A; Tascón JM
    J Colloid Interface Sci; 2006 Jan; 293(2):353-63. PubMed ID: 16081090
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of activated carbons modification on porosity, surface structure and phenol adsorption.
    Stavropoulos GG; Samaras P; Sakellaropoulos GP
    J Hazard Mater; 2008 Mar; 151(2-3):414-21. PubMed ID: 17644248
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physical and chemical properties and adsorption type of activated carbon prepared from plum kernels by NaOH activation.
    Tseng RL
    J Hazard Mater; 2007 Aug; 147(3):1020-7. PubMed ID: 17363154
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of vacuum pyrolysis conditions on the characteristics of activated carbons derived from pistachio-nut shells.
    Lua AC; Yang T
    J Colloid Interface Sci; 2004 Aug; 276(2):364-72. PubMed ID: 15271564
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural evolution of maize stalk/char particles during pyrolysis.
    Fu P; Hu S; Sun L; Xiang J; Yang T; Zhang A; Zhang J
    Bioresour Technol; 2009 Oct; 100(20):4877-83. PubMed ID: 19481930
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of activated carbon using vine shoots (Vitis vinifera) and its use for wine treatment.
    Corcho-Corral B; Olivares-Marín M; Valdes-Sánchez E; Fernández-González C; Macías-García A; Gómez-Serrano V
    J Agric Food Chem; 2005 Feb; 53(3):644-50. PubMed ID: 15686414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production of activated carbon by waste tire thermochemical degradation with CO2.
    Betancur M; Martínez JD; Murillo R
    J Hazard Mater; 2009 Sep; 168(2-3):882-7. PubMed ID: 19398156
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation and characterisation of raw chars and physically activated carbons derived from marine Posidonia oceanica (L.) fibres.
    Ncibi MC; Jeanne-Rose V; Mahjoub B; Jean-Marius C; Lambert J; Ehrhardt JJ; Bercion Y; Seffen M; Gaspard S
    J Hazard Mater; 2009 Jun; 165(1-3):240-9. PubMed ID: 19027228
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activated carbon from olive kernels in a two-stage process: industrial improvement.
    Zabaniotou A; Stavropoulos G; Skoulou V
    Bioresour Technol; 2008 Jan; 99(2):320-6. PubMed ID: 17307355
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation of carbon molecular sieves by carbon deposition from methane.
    Zhang T; Walawender WP; Fan LT
    Bioresour Technol; 2005 Nov; 96(17):1929-35. PubMed ID: 16084373
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adsorption of naphthalene from aqueous solution on activated carbons obtained from bean pods.
    Cabal B; Budinova T; Ania CO; Tsyntsarski B; Parra JB; Petrova B
    J Hazard Mater; 2009 Jan; 161(2-3):1150-6. PubMed ID: 18541368
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced adsorption of metal ions onto functionalized granular activated carbons prepared from cherry stones.
    Jaramillo J; Gómez-Serrano V; Alvarez PM
    J Hazard Mater; 2009 Jan; 161(2-3):670-6. PubMed ID: 18495336
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adsorption characteristics of N-nitrosodimethylamine from aqueous solution on surface-modified activated carbons.
    Dai X; Zou L; Yan Z; Millikan M
    J Hazard Mater; 2009 Aug; 168(1):51-6. PubMed ID: 19304376
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation and characterization of high-specific-surface-area activated carbons from K2CO3-treated waste polyurethane.
    Hayashi J; Yamamoto N; Horikawa T; Muroyama K; Gomes VG
    J Colloid Interface Sci; 2005 Jan; 281(2):437-43. PubMed ID: 15571700
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Some Oxidation Treatments on the Textural Characteristics and Surface Chemical Nature of an Activated Carbon.
    Domingo-García M; López-Garzón FJ; Pérez-Mendoza M
    J Colloid Interface Sci; 2000 Feb; 222(2):233-240. PubMed ID: 10662518
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Co-pyrolysis behaviour and kinetic of two typical solid wastes in China and characterisation of activated carbon prepared from pyrolytic char.
    Ma Y; Niu R; Wang X; Wang Q; Wang X; Sun X
    Waste Manag Res; 2014 Nov; 32(11):1123-33. PubMed ID: 25378256
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation and characterization of activated carbon derived from the thermo-chemical conversion of chicken manure.
    Koutcheiko S; Monreal CM; Kodama H; McCracken T; Kotlyar L
    Bioresour Technol; 2007 Sep; 98(13):2459-64. PubMed ID: 17098423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Textural and surface chemical characteristics of activated carbons prepared from cattle manure compost.
    Qian Q; Machida M; Tatsumoto H
    Waste Manag; 2008; 28(6):1064-71. PubMed ID: 17553676
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.