BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 16771428)

  • 1. Activation energy of catalysis-related domain motion in E. coli adenylate kinase.
    Shapiro YE; Meirovitch E
    J Phys Chem B; 2006 Jun; 110(23):11519-24. PubMed ID: 16771428
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel view of domain flexibility in E. coli adenylate kinase based on structural mode-coupling (15)N NMR relaxation.
    Tugarinov V; Shapiro YE; Liang Z; Freed JH; Meirovitch E
    J Mol Biol; 2002 Jan; 315(2):155-70. PubMed ID: 11779236
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Domain flexibility in ligand-free and inhibitor-bound Escherichia coli adenylate kinase based on a mode-coupling analysis of 15N spin relaxation.
    Shapiro YE; Kahana E; Tugarinov V; Liang Z; Freed JH; Meirovitch E
    Biochemistry; 2002 May; 41(20):6271-81. PubMed ID: 12009888
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Domain mobility in proteins from NMR/SRLS.
    Shapiro YE; Kahana E; Meirovitch E
    J Phys Chem B; 2009 Sep; 113(35):12050-60. PubMed ID: 19673471
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Escherichia coli adenylate kinase dynamics: comparison of elastic network model modes with mode-coupling (15)N-NMR relaxation data.
    Temiz NA; Meirovitch E; Bahar I
    Proteins; 2004 Nov; 57(3):468-80. PubMed ID: 15382240
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for domain motion in proteins affecting global diffusion properties: a nuclear magnetic resonance study.
    Shapiro YE; Meirovitch E
    J Phys Chem B; 2009 May; 113(19):7003-11. PubMed ID: 19385637
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Backbone dynamics of escherichia coli adenylate kinase at the extreme stages of the catalytic cycle studied by (15)N NMR relaxation.
    Shapiro YE; Sinev MA; Sineva EV; Tugarinov V; Meirovitch E
    Biochemistry; 2000 Jun; 39(22):6634-44. PubMed ID: 10828981
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of water in the enzymatic catalysis: study of ATP + AMP → 2ADP conversion by adenylate kinase.
    Adkar BV; Jana B; Bagchi B
    J Phys Chem A; 2011 Apr; 115(16):3691-7. PubMed ID: 20836529
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic coupling between the LID and NMP domain motions in the catalytic conversion of ATP and AMP to ADP by adenylate kinase.
    Jana B; Adkar BV; Biswas R; Bagchi B
    J Chem Phys; 2011 Jan; 134(3):035101. PubMed ID: 21261390
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural and dynamic studies on ligand-free adenylate kinase from Mycobacterium tuberculosis revealed a closed conformation that can be related to the reduced catalytic activity.
    Miron S; Munier-Lehmann H; Craescu CT
    Biochemistry; 2004 Jan; 43(1):67-77. PubMed ID: 14705932
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The closed conformation of a highly flexible protein: the structure of E. coli adenylate kinase with bound AMP and AMPPNP.
    Berry MB; Meador B; Bilderback T; Liang P; Glaser M; Phillips GN
    Proteins; 1994 Jul; 19(3):183-98. PubMed ID: 7937733
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular dynamics of apo-adenylate kinase: a distance replica exchange method for the free energy of conformational fluctuations.
    Lou H; Cukier RI
    J Phys Chem B; 2006 Nov; 110(47):24121-37. PubMed ID: 17125384
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Apo adenylate kinase encodes its holo form: a principal component and varimax analysis.
    Cukier RI
    J Phys Chem B; 2009 Feb; 113(6):1662-72. PubMed ID: 19159290
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Essential dynamics sampling study of adenylate kinase: comparison to citrate synthase and implication for the hinge and shear mechanisms of domain motions.
    Snow C; Qi G; Hayward S
    Proteins; 2007 May; 67(2):325-37. PubMed ID: 17299745
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Internal bulge and tetraloop of the catalytic domain 5 of a group II intron ribozyme are flexible: implications for catalysis.
    Eldho NV; Dayie KT
    J Mol Biol; 2007 Jan; 365(4):930-44. PubMed ID: 17098254
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Slowly relaxing local structure (SRLS) analysis of 15N-H relaxation from the prototypical small proteins GB1 and GB3.
    Shapiro YE; Meirovitch E
    J Phys Chem B; 2012 Apr; 116(13):4056-68. PubMed ID: 22397511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular dynamics of apo-adenylate kinase: a principal component analysis.
    Lou H; Cukier RI
    J Phys Chem B; 2006 Jun; 110(25):12796-808. PubMed ID: 16800615
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Domain closure in adenylate kinase. Joints on either side of two helices close like neighboring fingers.
    Gerstein M; Schulz G; Chothia C
    J Mol Biol; 1993 Jan; 229(2):494-501. PubMed ID: 8429559
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structure of human adenylate kinase 4 (L171P) suggests the role of hinge region in protein domain motion.
    Liu R; Xu H; Wei Z; Wang Y; Lin Y; Gong W
    Biochem Biophys Res Commun; 2009 Jan; 379(1):92-7. PubMed ID: 19073142
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Domain closure in adenylate kinase.
    Sinev MA; Sineva EV; Ittah V; Haas E
    Biochemistry; 1996 May; 35(20):6425-37. PubMed ID: 8639589
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.