These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 16771546)

  • 1. Ice chromatography. Characterization of water-ice as a chromatographic stationary phase.
    Tasaki Y; Okada T
    Anal Chem; 2006 Jun; 78(12):4155-60. PubMed ID: 16771546
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Facilitation of applicability in ice chromatography by mechanistic considerations and by preparation of fine water-ice stationary phase.
    Tasaki Y; Okada T
    Anal Chem; 2009 Feb; 81(3):890-7. PubMed ID: 19132921
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ice chromatography modification of solute retention on water-ice stationary phase.
    Tasaki Y; Okada T
    J Chromatogr A; 2008 May; 1189(1-2):72-6. PubMed ID: 17850803
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of ice chromatographic retention mechanism by changing temperature and dopant concentration.
    Tasaki Y; Okada T
    Anal Chem; 2011 Dec; 83(24):9593-9. PubMed ID: 22053829
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Retention process in reversed phase TLC systems with polar bonded stationary phases.
    Zapała W; Waksmundzka-Hajnos M
    J Sep Sci; 2005 Apr; 28(6):566-74. PubMed ID: 15881087
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ice chromatography: current progress and future developments.
    Okada T; Tasaki Y
    Anal Bioanal Chem; 2010 Jan; 396(1):221-7. PubMed ID: 19711058
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermodynamic model of quasiliquid formation on H2O ice: comparison with experiment.
    Henson BF; Voss LF; Wilson KR; Robinson JM
    J Chem Phys; 2005 Oct; 123(14):144707. PubMed ID: 16238416
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Separation properties of novel and commercial polar stationary phases in hydrophilic interaction and reversed-phase liquid chromatography mode.
    Wu J; Bicker W; Lindner W
    J Sep Sci; 2008 May; 31(9):1492-503. PubMed ID: 18461572
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of triproline and tri-alpha-methylproline chiral stationary phases: retention and enantioseparation associated with hydrogen bonding.
    Lao W; Gan J
    J Chromatogr A; 2009 Jun; 1216(25):5020-9. PubMed ID: 19446822
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative confocal Raman microscopy study of ion-interaction retention at reversed-phase chromatographic interfaces.
    Gasser-Ramirez JL; Harris JM
    Anal Chem; 2010 Jul; 82(13):5743-50. PubMed ID: 20527742
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adsorption of pure and mixed solvent solutions of spin probes onto stationary phases.
    Ottaviani MF; Cangiotti M; Famiglini G; Cappiello A
    J Phys Chem B; 2006 Jun; 110(21):10421-9. PubMed ID: 16722748
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Retention mechanisms in micellar liquid chromatography.
    Ruiz-Angel MJ; Carda-Broch S; Torres-Lapasió JR; García-Alvarez-Coque MC
    J Chromatogr A; 2009 Mar; 1216(10):1798-814. PubMed ID: 18838142
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrophilic interaction chromatography in nonaqueous elution mode for separation of hydrophilic analytes on silica-based packings with noncharged polar bondings.
    Bicker W; Wu J; Lämmerhofer M; Lindner W
    J Sep Sci; 2008 Sep; 31(16-17):2971-87. PubMed ID: 18785146
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chromatographic retention and thermodynamics of adsorption of dipeptides on a chiral crown ether stationary phase.
    Asnin L; Sharma K; Park SW
    J Sep Sci; 2011 Nov; 34(22):3136-44. PubMed ID: 21993964
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of column temperature and mobile phase components on selectivity of hydrophilic interaction chromatography (HILIC).
    Hao Z; Xiao B; Weng N
    J Sep Sci; 2008 May; 31(9):1449-64. PubMed ID: 18435508
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wetting of mixed OHH(2)O layers on Pt(111).
    Zimbitas G; Gallagher ME; Darling GR; Hodgson A
    J Chem Phys; 2008 Feb; 128(7):074701. PubMed ID: 18298158
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elution-extrusion countercurrent chromatography. Use of the liquid nature of the stationary phase to extend the hydrophobicity window.
    Berthod A; Ruiz-Angel MJ; Carda-Broch S
    Anal Chem; 2003 Nov; 75(21):5886-94. PubMed ID: 14588030
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of the endcapping of reversed-phase high-performance liquid chromatography adsorbents on the adsorption isotherm.
    Gritti F; Guiochon G
    J Chromatogr A; 2005 Dec; 1098(1-2):82-94. PubMed ID: 16314164
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A chromatographic estimate of the degree of surface heterogeneity of RPLC packing materials. III. Endcapped amido-embedded reversed phase.
    Gritti F; Guiochon G
    J Chromatogr A; 2006 Jan; 1103(1):69-82. PubMed ID: 16359691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chromatographic behavior of xanthines in aqueous normal phase chromatography using titania stationary phase.
    Jaoudé MA; Randon J
    J Chromatogr A; 2011 Feb; 1218(5):721-5. PubMed ID: 21185564
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.