These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 16771546)

  • 21. Retention mechanisms in super/subcritical fluid chromatography on packed columns.
    Lesellier E
    J Chromatogr A; 2009 Mar; 1216(10):1881-90. PubMed ID: 18996534
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Description and comparison of chromatographic tests and chemometric methods for packed column classification.
    Lesellier E; West C
    J Chromatogr A; 2007 Jul; 1158(1-2):329-60. PubMed ID: 17467721
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular-level comparison of alkylsilane and polar-embedded reversed-phase liquid chromatography systems.
    Rafferty JL; Siepmann JI; Schure MR
    Anal Chem; 2008 Aug; 80(16):6214-21. PubMed ID: 18642848
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Deuterium isotope effects on hydrophobic interactions: the importance of dispersion interactions in the hydrophobic phase.
    Turowski M; Yamakawa N; Meller J; Kimata K; Ikegami T; Hosoya K; Tanaka N; Thornton ER
    J Am Chem Soc; 2003 Nov; 125(45):13836-49. PubMed ID: 14599224
    [TBL] [Abstract][Full Text] [Related]  

  • 25. IR spectroscopic testing of surfaces in water ice and in icy mixtures with prussic acid or ammonia.
    Rudakova AV; Sekushin VN; Marinov IL; Tsyganenko AA
    Langmuir; 2009 Feb; 25(3):1482-7. PubMed ID: 19117474
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modelling of retention of pesticides in reversed-phase high-performance liquid chromatography: quantitative structure-retention relationships based on solute quantum-chemical descriptors and experimental (solvatochromic and spin-probe) mobile phase descriptors.
    D'Archivio AA; Ruggieri F; Mazzeo P; Tettamanti E
    Anal Chim Acta; 2007 Jun; 593(2):140-51. PubMed ID: 17543600
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Prediction of retention in reversed-phase liquid chromatography by means of the polarity parameter model.
    Lázaro E; Izquierdo P; Ràfols C; Rosés M; Bosch E
    J Chromatogr A; 2009 Jul; 1216(27):5214-27. PubMed ID: 19493533
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spectroscopic probes of the quasi-liquid layer on ice.
    Kahan TF; Reid JP; Donaldson DJ
    J Phys Chem A; 2007 Nov; 111(43):11006-12. PubMed ID: 17918812
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enantiomer separation of imidazo-quinazoline-dione derivatives on quinine carbamate-based chiral stationary phase in normal phase mode.
    Gyimesi-Forrás K; Maier NM; Kökösi J; Gergely A; Lindner W
    Chirality; 2009 Jan; 21(1):199-207. PubMed ID: 18698643
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influence of analyte overloading on retention in gas-liquid chromatography: a molecular simulation view.
    Wick CD; Siepmann JI; Schures MR
    Anal Chem; 2002 Jan; 74(1):37-44. PubMed ID: 11795813
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Wrong gas/liquid partition data by gas chromatography.
    Kováts ES; Kresz R
    J Chromatogr A; 2006 Apr; 1113(1-2):206-19. PubMed ID: 16497316
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Adsorption of HCl on the water ice surface studied by X-ray absorption spectroscopy.
    Parent P; Laffon C
    J Phys Chem B; 2005 Feb; 109(4):1547-53. PubMed ID: 16851126
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization of different reversed phase systems in liquid adsorption chromatography of polymer homologous series.
    Trathnigg B; Jamelnik O
    J Chromatogr A; 2007 Mar; 1146(1):78-84. PubMed ID: 17316659
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mobile phase effects on retention on a new butylimidazolium-based high-performance liquid chromatographic stationary phase.
    Sun Y; Stalcup AM
    J Chromatogr A; 2006 Sep; 1126(1-2):276-82. PubMed ID: 16854426
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Prediction of elution bandwidth for purine compounds by a retention model in reversed-phase HPLC with linear-gradient elution.
    Jin CH; Lee JW; Row KH
    J Sep Sci; 2008 Jan; 31(1):23-9. PubMed ID: 18064619
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Solvation parameter models for retention on perfluorinated and fluorinated low temperature glassy carbon stationary phases in reversed-phase liquid chromatography.
    Shearer JW; Ding L; Olesik SV
    J Chromatogr A; 2007 Feb; 1141(1):73-80. PubMed ID: 17188695
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Retention mechanism in reversed-phase liquid chromatography: a molecular perspective.
    Rafferty JL; Zhang L; Siepmann JI; Schure MR
    Anal Chem; 2007 Sep; 79(17):6551-8. PubMed ID: 17668929
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecular dynamics simulation of the adsorption of oxalic acid on an ice surface.
    Darvas M; Picaud S; Jedlovszky P
    Chemphyschem; 2010 Dec; 11(18):3971-9. PubMed ID: 20830727
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Single-step preparation and characterization of polymeric monolith for pressurized capillary electrochromatography of typical homologs.
    Lü H; Wang J; Wang X; Wu X; Lin X; Xie Z
    J Sep Sci; 2007 Nov; 30(17):2993-9. PubMed ID: 17880031
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Combined supercritical fluid chromatographic tests to improve the classification of numerous stationary phases used in reversed-phase liquid chromatography.
    West C; Fougère L; Lesellier E
    J Chromatogr A; 2008 May; 1189(1-2):227-44. PubMed ID: 18201706
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.