These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Processes controlling the diameter distribution of single-walled carbon nanotubes during catalytic chemical vapor deposition. Picher M; Anglaret E; Arenal R; Jourdain V ACS Nano; 2011 Mar; 5(3):2118-25. PubMed ID: 21314174 [TBL] [Abstract][Full Text] [Related]
5. Effect of deposition pressure on the morphology and structural properties of carbon nanotubes synthesized by hot-filament chemical vapor deposition. Arendse CJ; Malgas GF; Scriba MR; Cummings FR; Knoesen D J Nanosci Nanotechnol; 2007 Oct; 7(10):3638-42. PubMed ID: 18330185 [TBL] [Abstract][Full Text] [Related]
6. Controlling the catalyst during carbon nanotube growth. Robertson J; Hofmann S; Cantoro M; Parvez A; Ducati C; Zhong G; Sharma R; Mattevi C J Nanosci Nanotechnol; 2008 Nov; 8(11):6105-11. PubMed ID: 19198352 [TBL] [Abstract][Full Text] [Related]
7. Improved and large area single-walled carbon nanotube forest growth by controlling the gas flow direction. Yasuda S; Futaba DN; Yamada T; Satou J; Shibuya A; Takai H; Arakawa K; Yumura M; Hata K ACS Nano; 2009 Dec; 3(12):4164-70. PubMed ID: 19947579 [TBL] [Abstract][Full Text] [Related]
8. A nucleation and growth model of vertically-oriented carbon nanofibers or nanotubes by plasma-enhanced catalytic chemical vapor deposition. Cojocaru CS; Senger A; Le Normand F J Nanosci Nanotechnol; 2006 May; 6(5):1331-8. PubMed ID: 16792361 [TBL] [Abstract][Full Text] [Related]
9. A tight-binding grand canonical Monte Carlo study of the catalytic growth of carbon nanotubes. Amara H; Bichara C; Ducastelle F J Nanosci Nanotechnol; 2008 Nov; 8(11):6099-104. PubMed ID: 19198351 [TBL] [Abstract][Full Text] [Related]
13. Effect of the on/off cyclic modulation time ratio of C2H2/H2 flow on the low temperature deposition of carbon nanofilaments. Kim KD; Kim SH; Kim NS; Kim DU J Nanosci Nanotechnol; 2007 Nov; 7(11):3969-73. PubMed ID: 18047098 [TBL] [Abstract][Full Text] [Related]
14. Carbon nanotubes by electrospinning with a polyelectrolyte and vapor deposition polymerization. McCann JT; Lim B; Ostermann R; Rycenga M; Marquez M; Xia Y Nano Lett; 2007 Aug; 7(8):2470-4. PubMed ID: 17629350 [TBL] [Abstract][Full Text] [Related]
15. Controlled growth-reversal of catalytic carbon nanotubes under electron-beam irradiation. Stolojan V; Tison Y; Chen GY; Silva R Nano Lett; 2006 Sep; 6(9):1837-41. PubMed ID: 16967987 [TBL] [Abstract][Full Text] [Related]
16. Structural study of single-walled carbon nanotube films doped by a solution method. Takenobu T; Takahashi T; Akima N; Shiraishi M; Kataura H; Iwasa Y J Nanosci Nanotechnol; 2007 Oct; 7(10):3533-6. PubMed ID: 18330170 [TBL] [Abstract][Full Text] [Related]
17. Dynamical observation of bamboo-like carbon nanotube growth. Lin M; Tan JP; Boothroyd C; Loh KP; Tok ES; Foo YL Nano Lett; 2007 Aug; 7(8):2234-8. PubMed ID: 17604403 [TBL] [Abstract][Full Text] [Related]
18. Structural analysis of multi-walled carbon nanocoils synthesized with Fe-Sn catalyst supported on zeolite. Yokota M; Suda Y; Takikawa H; Ue H; Shimizu K; Umeda Y J Nanosci Nanotechnol; 2011 Mar; 11(3):2344-8. PubMed ID: 21449391 [TBL] [Abstract][Full Text] [Related]
19. Growth window and possible mechanism of millimeter-thick single-walled carbon nanotube forests. Hasegawa K; Noda S; Sugime H; Kakehi K; Maruyama S; Yamaguchi Y J Nanosci Nanotechnol; 2008 Nov; 8(11):6123-8. PubMed ID: 19198354 [TBL] [Abstract][Full Text] [Related]