BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 16771666)

  • 21. Mutational analysis of the disulfide catalysts DsbA and DsbB.
    Tan J; Lu Y; Bardwell JC
    J Bacteriol; 2005 Feb; 187(4):1504-10. PubMed ID: 15687215
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization of the menaquinone-dependent disulfide bond formation pathway of Escherichia coli.
    Takahashi YH; Inaba K; Ito K
    J Biol Chem; 2004 Nov; 279(45):47057-65. PubMed ID: 15347648
    [TBL] [Abstract][Full Text] [Related]  

  • 23. DsbB catalyzes disulfide bond formation de novo.
    Regeimbal J; Bardwell JC
    J Biol Chem; 2002 Sep; 277(36):32706-13. PubMed ID: 12072444
    [TBL] [Abstract][Full Text] [Related]  

  • 24. DsbA-DsbB interaction through their active site cysteines. Evidence from an odd cysteine mutant of DsbA.
    Kishigami S; Kanaya E; Kikuchi M; Ito K
    J Biol Chem; 1995 Jul; 270(29):17072-4. PubMed ID: 7615498
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Protein Disulfide Exchange by the Intramembrane Enzymes DsbB, DsbD, and CcdA.
    Bushweller JH
    J Mol Biol; 2020 Aug; 432(18):5091-5103. PubMed ID: 32305461
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inhibition of virulence-promoting disulfide bond formation enzyme DsbB is blocked by mutating residues in two distinct regions.
    Landeta C; Meehan BM; McPartland L; Ingendahl L; Hatahet F; Tran NQ; Boyd D; Beckwith J
    J Biol Chem; 2017 Apr; 292(16):6529-6541. PubMed ID: 28232484
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Roles of a conserved arginine residue of DsbB in linking protein disulfide-bond-formation pathway to the respiratory chain of Escherichia coli.
    Kadokura H; Bader M; Tian H; Bardwell JC; Beckwith J
    Proc Natl Acad Sci U S A; 2000 Sep; 97(20):10884-9. PubMed ID: 11005861
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evidence that the pathway of disulfide bond formation in Escherichia coli involves interactions between the cysteines of DsbB and DsbA.
    Guilhot C; Jander G; Martin NL; Beckwith J
    Proc Natl Acad Sci U S A; 1995 Oct; 92(21):9895-9. PubMed ID: 7568240
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Respiratory chain is required to maintain oxidized states of the DsbA-DsbB disulfide bond formation system in aerobically growing Escherichia coli cells.
    Kobayashi T; Kishigami S; Sone M; Inokuchi H; Mogi T; Ito K
    Proc Natl Acad Sci U S A; 1997 Oct; 94(22):11857-62. PubMed ID: 9342327
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Conserved role of the linker alpha-helix of the bacterial disulfide isomerase DsbC in the avoidance of misoxidation by DsbB.
    Segatori L; Murphy L; Arredondo S; Kadokura H; Gilbert H; Beckwith J; Georgiou G
    J Biol Chem; 2006 Feb; 281(8):4911-9. PubMed ID: 16280324
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Protein disulfide bond generation in Escherichia coli DsbB-DsbA.
    Inaba K
    J Synchrotron Radiat; 2008 May; 15(Pt 3):199-201. PubMed ID: 18421137
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Solid-state NMR study of the charge-transfer complex between ubiquinone-8 and disulfide bond generating membrane protein DsbB.
    Tang M; Sperling LJ; Berthold DA; Nesbitt AE; Gennis RB; Rienstra CM
    J Am Chem Soc; 2011 Mar; 133(12):4359-66. PubMed ID: 21375236
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification of the ubiquinone-binding domain in the disulfide catalyst disulfide bond protein B.
    Xie T; Yu L; Bader MW; Bardwell JC; Yu CA
    J Biol Chem; 2002 Jan; 277(3):1649-52. PubMed ID: 11698406
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification of a segment of DsbB essential for its respiration-coupled oxidation.
    Kobayashi T; Takahashi Y; Ito K
    Mol Microbiol; 2001 Jan; 39(1):158-65. PubMed ID: 11123697
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The dsbA-dsbB disulfide bond formation system of Burkholderia cepacia is involved in the production of protease and alkaline phosphatase, motility, metal resistance, and multi-drug resistance.
    Hayashi S; Abe M; Kimoto M; Furukawa S; Nakazawa T
    Microbiol Immunol; 2000; 44(1):41-50. PubMed ID: 10711598
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The dithiol:disulfide oxidoreductases DsbA and DsbB of Rhodobacter capsulatus are not directly involved in cytochrome c biogenesis, but their inactivation restores the cytochrome c biogenesis defect of CcdA-null mutants.
    Deshmukh M; Turkarslan S; Astor D; Valkova-Valchanova M; Daldal F
    J Bacteriol; 2003 Jun; 185(11):3361-72. PubMed ID: 12754234
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Two cysteines in each periplasmic domain of the membrane protein DsbB are required for its function in protein disulfide bond formation.
    Jander G; Martin NL; Beckwith J
    EMBO J; 1994 Nov; 13(21):5121-7. PubMed ID: 7957076
    [TBL] [Abstract][Full Text] [Related]  

  • 38. DsbL and DsbI form a specific dithiol oxidase system for periplasmic arylsulfate sulfotransferase in uropathogenic Escherichia coli.
    Grimshaw JP; Stirnimann CU; Brozzo MS; Malojcic G; Grütter MG; Capitani G; Glockshuber R
    J Mol Biol; 2008 Jul; 380(4):667-80. PubMed ID: 18565543
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The disulfide bond formation (Dsb) system.
    Ito K; Inaba K
    Curr Opin Struct Biol; 2008 Aug; 18(4):450-8. PubMed ID: 18406599
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The α-proteobacteria Wolbachia pipientis protein disulfide machinery has a regulatory mechanism absent in γ-proteobacteria.
    Walden PM; Halili MA; Archbold JK; Lindahl F; Fairlie DP; Inaba K; Martin JL
    PLoS One; 2013; 8(11):e81440. PubMed ID: 24282596
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.