BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 16771666)

  • 41. Overexpression of the rhodanese PspE, a single cysteine-containing protein, restores disulphide bond formation to an Escherichia coli strain lacking DsbA.
    Chng SS; Dutton RJ; Denoncin K; Vertommen D; Collet JF; Kadokura H; Beckwith J
    Mol Microbiol; 2012 Sep; 85(5):996-1006. PubMed ID: 22809289
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Intriguing conformation changes associated with the trans/cis isomerization of a prolyl residue in the active site of the DsbA C33A mutant.
    Ondo-Mbele E; Vivès C; Koné A; Serre L
    J Mol Biol; 2005 Apr; 347(3):555-63. PubMed ID: 15755450
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Entropy-Driven Mechanisms between Disulfide-Bond Formation Protein A (DsbA) and B (DsbB) in
    Yazawa K; Furusawa H
    ACS Omega; 2019 May; 4(5):8341-8349. PubMed ID: 31459922
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Warfarin analogs target disulfide bond-forming enzymes and suggest a residue important for quinone and coumarin binding.
    Chavez D; Amarquaye GN; Mejia-Santana A; Dyotima ; Ryan K; Zeng L; Landeta C
    J Biol Chem; 2024 Jun; 300(6):107383. PubMed ID: 38762182
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A water-soluble DsbB variant that catalyzes disulfide-bond formation in vivo.
    Mizrachi D; Robinson MP; Ren G; Ke N; Berkmen M; DeLisa MP
    Nat Chem Biol; 2017 Sep; 13(9):1022-1028. PubMed ID: 28628094
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Disulfide bond formation system in Escherichia coli.
    Inaba K
    J Biochem; 2009 Nov; 146(5):591-7. PubMed ID: 19567379
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Complementation of DsbA deficiency with secreted thioredoxin variants reveals the crucial role of an efficient dithiol oxidant for catalyzed protein folding in the bacterial periplasm.
    Jonda S; Huber-Wunderlich M; Glockshuber R; Mössner E
    EMBO J; 1999 Jun; 18(12):3271-81. PubMed ID: 10369668
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Thermodynamic aspects of DsbD-mediated electron transport.
    Rozhkova A; Glockshuber R
    J Mol Biol; 2008 Jul; 380(5):783-8. PubMed ID: 18571669
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Disulfide bond formation involves a quinhydrone-type charge-transfer complex.
    Regeimbal J; Gleiter S; Trumpower BL; Yu CA; Diwakar M; Ballou DP; Bardwell JC
    Proc Natl Acad Sci U S A; 2003 Nov; 100(24):13779-84. PubMed ID: 14612576
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Thiol oxidation in bacteria, mitochondria and chloroplasts: common principles but three unrelated machineries?
    Herrmann JM; Kauff F; Neuhaus HE
    Biochim Biophys Acta; 2009 Jan; 1793(1):71-7. PubMed ID: 18522807
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Structure of the disulfide bond generating membrane protein DsbB in the lipid bilayer.
    Tang M; Nesbitt AE; Sperling LJ; Berthold DA; Schwieters CD; Gennis RB; Rienstra CM
    J Mol Biol; 2013 May; 425(10):1670-82. PubMed ID: 23416557
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Characterization of new DsbB-like thiol-oxidoreductases of Campylobacter jejuni and Helicobacter pylori and classification of the DsbB family based on phylogenomic, structural and functional criteria.
    Raczko AM; Bujnicki JM; Pawłowski M; Godlewska R; Lewandowska M; Jagusztyn-Krynicka EK
    Microbiology (Reading); 2005 Jan; 151(Pt 1):219-231. PubMed ID: 15632440
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Snapshots of DsbA in action: detection of proteins in the process of oxidative folding.
    Kadokura H; Tian H; Zander T; Bardwell JC; Beckwith J
    Science; 2004 Jan; 303(5657):534-7. PubMed ID: 14739460
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Redox states of DsbA in the periplasm of Escherichia coli.
    Kishigami S; Akiyama Y; Ito K
    FEBS Lett; 1995 May; 364(1):55-8. PubMed ID: 7750543
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Disulfide bonds are generated by quinone reduction.
    Bader MW; Xie T; Yu CA; Bardwell JC
    J Biol Chem; 2000 Aug; 275(34):26082-8. PubMed ID: 10854438
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Rv2969c, essential for optimal growth in Mycobacterium tuberculosis, is a DsbA-like enzyme that interacts with VKOR-derived peptides and has atypical features of DsbA-like disulfide oxidases.
    Premkumar L; Heras B; Duprez W; Walden P; Halili M; Kurth F; Fairlie DP; Martin JL
    Acta Crystallogr D Biol Crystallogr; 2013 Oct; 69(Pt 10):1981-94. PubMed ID: 24100317
    [TBL] [Abstract][Full Text] [Related]  

  • 57. An engineered pathway for the formation of protein disulfide bonds.
    Masip L; Pan JL; Haldar S; Penner-Hahn JE; DeLisa MP; Georgiou G; Bardwell JC; Collet JF
    Science; 2004 Feb; 303(5661):1185-9. PubMed ID: 14976313
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Oxidative protein folding is driven by the electron transport system.
    Bader M; Muse W; Ballou DP; Gassner C; Bardwell JC
    Cell; 1999 Jul; 98(2):217-27. PubMed ID: 10428033
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Protein disulfide bond formation in prokaryotes.
    Kadokura H; Katzen F; Beckwith J
    Annu Rev Biochem; 2003; 72():111-35. PubMed ID: 12524212
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Partial (13)C and (15)N chemical-shift assignments of the disulfide-bond-forming enzyme DsbB by 3D magic-angle spinning NMR spectroscopy.
    Li Y; Berthold DA; Frericks HL; Gennis RB; Rienstra CM
    Chembiochem; 2007 Mar; 8(4):434-42. PubMed ID: 17285659
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.