These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
16. Cytoplasmic calcium fluctuations in calcium overloaded Xenopus laevis oocytes. Poledna J; Packová V Gen Physiol Biophys; 1995 Aug; 14(4):339-47. PubMed ID: 8720697 [TBL] [Abstract][Full Text] [Related]
17. Intercellular communication between follicular angiotensin receptors and Xenopus laevis oocytes: medication by an inositol 1,4,5-trisphosphate-dependent mechanism. Sandberg K; Ji H; Iida T; Catt KJ J Cell Biol; 1992 Apr; 117(1):157-67. PubMed ID: 1556150 [TBL] [Abstract][Full Text] [Related]
18. Adenophostin A can stimulate Ca2+ influx without depleting the inositol 1,4,5-trisphosphate-sensitive Ca2+ stores in the Xenopus oocyte. DeLisle S; Marksberry EW; Bonnett C; Jenkins DJ; Potter BV; Takahashi M; Tanzawa K J Biol Chem; 1997 Apr; 272(15):9956-61. PubMed ID: 9092535 [TBL] [Abstract][Full Text] [Related]
19. Injection of inositol 1,3,4,5-tetrakisphosphate into Xenopus oocytes generates a chloride current dependent upon intracellular calcium. Parker I; Miledi R Proc R Soc Lond B Biol Sci; 1987 Oct; 232(1266):59-70. PubMed ID: 2446333 [TBL] [Abstract][Full Text] [Related]
20. Inositol 1,4,5-trisphosphate-induced calcium release in the organelle layers of the stratified, intact egg of Xenopus laevis. Han JK; Nuccitelli R J Cell Biol; 1990 Apr; 110(4):1103-10. PubMed ID: 2324195 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]