These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 16772025)

  • 1. Impact of RNA structure on the prediction of donor and acceptor splice sites.
    Marashi SA; Eslahchi C; Pezeshk H; Sadeghi M
    BMC Bioinformatics; 2006 Jun; 7():297. PubMed ID: 16772025
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Importance of RNA secondary structure information for yeast donor and acceptor splice site predictions by neural networks.
    Marashi SA; Goodarzi H; Sadeghi M; Eslahchi C; Pezeshk H
    Comput Biol Chem; 2006 Feb; 30(1):50-7. PubMed ID: 16386465
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pre-mRNA secondary structure prediction aids splice site prediction.
    Patterson DJ; Yasuhara K; Ruzzo WL
    Pac Symp Biocomput; 2002; ():223-34. PubMed ID: 11928478
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluating the performance of sequence encoding schemes and machine learning methods for splice sites recognition.
    Meher PK; Sahu TK; Gahoi S; Satpathy S; Rao AR
    Gene; 2019 Jul; 705():113-126. PubMed ID: 31009682
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo genome-wide profiling of RNA secondary structure reveals novel regulatory features.
    Ding Y; Tang Y; Kwok CK; Zhang Y; Bevilacqua PC; Assmann SM
    Nature; 2014 Jan; 505(7485):696-700. PubMed ID: 24270811
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A method for identifying alternative or cryptic donor splice sites within gene and mRNA sequences. Comparisons among sequences from vertebrates, echinoderms and other groups.
    Buckley KM; Florea LD; Smith LC
    BMC Genomics; 2009 Jul; 10():318. PubMed ID: 19607703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast splice site detection using information content and feature reduction.
    Baten AK; Halgamuge SK; Chang BC
    BMC Bioinformatics; 2008 Dec; 9 Suppl 12(Suppl 12):S8. PubMed ID: 19091031
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A statistical approach for 5' splice site prediction using short sequence motifs and without encoding sequence data.
    Meher PK; Sahu TK; Rao AR; Wahi SD
    BMC Bioinformatics; 2014 Nov; 15():362. PubMed ID: 25420551
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SpliceFinder: ab initio prediction of splice sites using convolutional neural network.
    Wang R; Wang Z; Wang J; Li S
    BMC Bioinformatics; 2019 Dec; 20(Suppl 23):652. PubMed ID: 31881982
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Splice site identification using probabilistic parameters and SVM classification.
    Baten AK; Chang BC; Halgamuge SK; Li J
    BMC Bioinformatics; 2006 Dec; 7 Suppl 5(Suppl 5):S15. PubMed ID: 17254299
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ERISdb: a database of plant splice sites and splicing signals.
    Szcześniak MW; Kabza M; Pokrzywa R; Gudyś A; Makałowska I
    Plant Cell Physiol; 2013 Feb; 54(2):e10. PubMed ID: 23299413
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of secondary structure on pre-mRNA splicing: hairpins sequestering the 5' but not the 3' splice site inhibit intron processing in Nicotiana plumbaginifolia.
    Liu HX; Goodall GJ; Kole R; Filipowicz W
    EMBO J; 1995 Jan; 14(2):377-88. PubMed ID: 7835348
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Splice site prediction with quadratic discriminant analysis using diversity measure.
    Zhang L; Luo L
    Nucleic Acids Res; 2003 Nov; 31(21):6214-20. PubMed ID: 14576308
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Logitlinear models for the prediction of splice sites in plant pre-mRNA sequences.
    Kleffe J; Hermann K; Vahrson W; Wittig B; Brendel V
    Nucleic Acids Res; 1996 Dec; 24(23):4709-18. PubMed ID: 8972857
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Splice site prediction in Arabidopsis thaliana pre-mRNA by combining local and global sequence information.
    Hebsgaard SM; Korning PG; Tolstrup N; Engelbrecht J; Rouzé P; Brunak S
    Nucleic Acids Res; 1996 Sep; 24(17):3439-52. PubMed ID: 8811101
    [TBL] [Abstract][Full Text] [Related]  

  • 16. COSSMO: predicting competitive alternative splice site selection using deep learning.
    Bretschneider H; Gandhi S; Deshwar AG; Zuberi K; Frey BJ
    Bioinformatics; 2018 Jul; 34(13):i429-i437. PubMed ID: 29949959
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational approaches for the discovery of splicing regulatory RNA structures.
    Andrews RJ; Moss WN
    Biochim Biophys Acta Gene Regul Mech; 2019; 1862(11-12):194380. PubMed ID: 31048028
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Read-Split-Run: an improved bioinformatics pipeline for identification of genome-wide non-canonical spliced regions using RNA-Seq data.
    Bai Y; Kinne J; Donham B; Jiang F; Ding L; Hassler JR; Kaufman RJ
    BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):503. PubMed ID: 27556805
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clustering and detection of 5' splice sites of mRNA by k weight-matrices model.
    Murakami K; Takagi T
    Pac Symp Biocomput; 1999; ():171-81. PubMed ID: 10380195
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient computation of optimal oligo-RNA binding.
    Hodas NO; Aalberts DP
    Nucleic Acids Res; 2004; 32(22):6636-42. PubMed ID: 15608295
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.