These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 16772512)
1. Fermentative gases in breath indicate that inulin and starch start to be degraded by microbial fermentation in the stomach and small intestine of the horse in contrast to pectin and cellulose. Coenen M; Mösseler A; Vervuert I J Nutr; 2006 Jul; 136(7 Suppl):2108S-2110S. PubMed ID: 16772512 [No Abstract] [Full Text] [Related]
2. The effect of pectin, corn and wheat starch, inulin and pH on in vitro production of methane, short chain fatty acids and on the microbial community composition in rumen fluid. Poulsen M; Jensen BB; Engberg RM Anaerobe; 2012 Feb; 18(1):83-90. PubMed ID: 22193552 [TBL] [Abstract][Full Text] [Related]
3. Interactive effects of protein and carbohydrates on production of microbial metabolites in the large intestine of growing pigs. Taciak M; Barszcz M; Święch E; Tuśnio A; Bachanek I Arch Anim Nutr; 2017 Jun; 71(3):192-209. PubMed ID: 28429993 [TBL] [Abstract][Full Text] [Related]
4. Fermentation of various soluble carbohydrates in rumen micro-organisms. Czerkawaki JW; Breckenridge G Proc Nutr Soc; 1969 Sep; 28(2):52A-53A. PubMed ID: 5389489 [No Abstract] [Full Text] [Related]
5. Comparison of lactulose and inulin as reference standard for the study of resistant starch fermentation using hydrogen breath test. Brighenti F; Casiraghi MC; Pellegrini N; Riso P; Simonetti P; Testolin G Ital J Gastroenterol; 1995 Apr; 27(3):122-8. PubMed ID: 7548920 [TBL] [Abstract][Full Text] [Related]
6. Comparative effects of cellulose and soluble fibers (pectin, konjac glucomannan, inulin) on fecal water toxicity toward Caco-2 cells, fecal bacteria enzymes, bile acid, and short-chain fatty acids. Chen HL; Lin YM; Wang YC J Agric Food Chem; 2010 Sep; 58(18):10277-81. PubMed ID: 20799709 [TBL] [Abstract][Full Text] [Related]
8. The fermentation of different dietary fibers is associated with fecal clostridia levels in men. Chinda D; Nakaji S; Fukuda S; Sakamoto J; Shimoyama T; Nakamura T; Fujisawa T; Terada A; Sugawara K J Nutr; 2004 Aug; 134(8):1881-6. PubMed ID: 15284370 [TBL] [Abstract][Full Text] [Related]
9. Effects of fermentable carbohydrates and low dietary phosphorus supply on the chemical composition of faecal bacteria and microbial metabolites in the gastrointestinal tract of pigs. Metzler BU; Mosenthin R; Baumgärtel T; Rodehutscord M J Anim Physiol Anim Nutr (Berl); 2009 Feb; 93(1):130-9. PubMed ID: 19386017 [TBL] [Abstract][Full Text] [Related]
10. Influence of fiber fermentability on nutrient digestion in the dog. Silvio J; Harmon DL; Gross KL; McLeod KR Nutrition; 2000 Apr; 16(4):289-95. PubMed ID: 10758366 [TBL] [Abstract][Full Text] [Related]
11. In vitro fermentation of cellulose, beet pulp, citrus pulp, and citrus pectin using fecal inoculum from cats, dogs, horses, humans, and pigs and ruminal fluid from cattle. Sunvold GD; Hussein HS; Fahey GC; Merchen NR; Reinhart GA J Anim Sci; 1995 Dec; 73(12):3639-48. PubMed ID: 8655439 [TBL] [Abstract][Full Text] [Related]
12. [Investigations into the biological disintegration of organic natural substances by aquatic hyphomycetes (author's transl)]. Danninger E; Messner K; Röhr M Zentralbl Bakteriol B; 1979 Oct; 169(3-4):282-6. PubMed ID: 94494 [TBL] [Abstract][Full Text] [Related]
13. Difference in sporogenous bacterial populations in thermophilic (55 degrees C) and mesophilic (35 degrees C) anaerobic sewage digestion. Chen M Appl Environ Microbiol; 1987 Oct; 53(10):2414-9. PubMed ID: 3426215 [TBL] [Abstract][Full Text] [Related]
14. Intestinal transport and fermentation of resistant starch evaluated by the hydrogen breath test. Olesen M; Rumessen JJ; Gudmand-Høyer E Eur J Clin Nutr; 1994 Oct; 48(10):692-701. PubMed ID: 7835324 [TBL] [Abstract][Full Text] [Related]
15. Cellulose and hemicellulose digestibility in the stomach, small intestine and large intestine of swine. Keys JE; DeBarthe JV J Anim Sci; 1974 Jul; 39(1):53-6. PubMed ID: 4837317 [No Abstract] [Full Text] [Related]
16. Formation of Cellulose-Based Composites with Hemicelluloses and Pectins Using Komagataeibacter Fermentation. Mikkelsen D; Lopez-Sanchez P; Wang D; Gidley MJ Methods Mol Biol; 2020; 2149():73-87. PubMed ID: 32617930 [TBL] [Abstract][Full Text] [Related]
17. In vitro batch fecal fermentation comparison of gas and short-chain fatty acid production using "slowly fermentable" dietary fibers. Kaur A; Rose DJ; Rumpagaporn P; Patterson JA; Hamaker BR J Food Sci; 2011; 76(5):H137-42. PubMed ID: 22417432 [TBL] [Abstract][Full Text] [Related]
18. Comparative study of the acute effects of resistant starch and dietary fibers on metabolic indexes in men. Ranganathan S; Champ M; Pechard C; Blanchard P; Nguyen M; Colonna P; Krempf M Am J Clin Nutr; 1994 Apr; 59(4):879-83. PubMed ID: 8147333 [TBL] [Abstract][Full Text] [Related]
19. Adding mucins to an in vitro batch fermentation model of the large intestine induces changes in microbial population isolated from porcine feces depending on the substrate. Tran TH; Boudry C; Everaert N; Théwis A; Portetelle D; Daube G; Nezer C; Taminiau B; Bindelle J FEMS Microbiol Ecol; 2016 Feb; 92(2):. PubMed ID: 26691596 [TBL] [Abstract][Full Text] [Related]
20. Dietary cellulose, fructooligosaccharides, and pectin modify fecal protein catabolites and microbial populations in adult cats. Barry KA; Wojcicki BJ; Middelbos IS; Vester BM; Swanson KS; Fahey GC J Anim Sci; 2010 Sep; 88(9):2978-87. PubMed ID: 20495116 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]