These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. A monomeric variant of GroEL binds nucleotides but is inactive as a molecular chaperone. White ZW; Fisher KE; Eisenstein E J Biol Chem; 1995 Sep; 270(35):20404-9. PubMed ID: 7657615 [TBL] [Abstract][Full Text] [Related]
4. GroEL and GroES increase the specific enzymatic activity of newly-synthesized rhodanese if present during in vitro transcription/translation. Tsalkova T; Zardeneta G; Kudlicki W; Kramer G; Horowitz PM; Hardesty B Biochemistry; 1993 Apr; 32(13):3377-80. PubMed ID: 8096394 [TBL] [Abstract][Full Text] [Related]
5. Positive cooperativity in the functioning of molecular chaperone GroEL. Bochkareva ES; Lissin NM; Flynn GC; Rothman JE; Girshovich AS J Biol Chem; 1992 Apr; 267(10):6796-800. PubMed ID: 1348056 [TBL] [Abstract][Full Text] [Related]
6. NMR analysis of the binding of a rhodanese peptide to a minichaperone in solution. Kobayashi N; Freund SM; Chatellier J; Zahn R; Fersht AR J Mol Biol; 1999 Sep; 292(1):181-90. PubMed ID: 10493867 [TBL] [Abstract][Full Text] [Related]
7. The formation of symmetrical GroEL-GroES complexes in the presence of ATP. Llorca O; Marco S; Carrascosa JL; Valpuesta JM FEBS Lett; 1994 May; 345(2-3):181-6. PubMed ID: 7911087 [TBL] [Abstract][Full Text] [Related]
8. Truncated GroEL monomer has the ability to promote folding of rhodanese without GroES and ATP. Makino Y; Taguchi H; Yoshida M FEBS Lett; 1993 Dec; 336(2):363-7. PubMed ID: 7903258 [TBL] [Abstract][Full Text] [Related]
9. Different conformations for the same polypeptide bound to chaperones DnaK and GroEL. Landry SJ; Jordan R; McMacken R; Gierasch LM Nature; 1992 Jan; 355(6359):455-7. PubMed ID: 1346469 [TBL] [Abstract][Full Text] [Related]
10. The chaperonin assisted and unassisted refolding of rhodanese can be modulated by its N-terminal peptide. Mendoza JA; Horowitz PM J Protein Chem; 1994 Jan; 13(1):15-22. PubMed ID: 8011067 [TBL] [Abstract][Full Text] [Related]
11. The lower hydrolysis of ATP by the stress protein GroEL is a major factor responsible for the diminished chaperonin activity at low temperature. Mendoza JA; Dulin P; Warren T Cryobiology; 2000 Dec; 41(4):319-23. PubMed ID: 11222029 [TBL] [Abstract][Full Text] [Related]
12. Mechanism of chaperonin action: GroES binding and release can drive GroEL-mediated protein folding in the absence of ATP hydrolysis. Hayer-Hartl MK; Weber F; Hartl FU EMBO J; 1996 Nov; 15(22):6111-21. PubMed ID: 8947033 [TBL] [Abstract][Full Text] [Related]
14. Minimal and optimal mechanisms for GroE-mediated protein folding. Ben-Zvi AP; Chatellier J; Fersht AR; Goloubinoff P Proc Natl Acad Sci U S A; 1998 Dec; 95(26):15275-80. PubMed ID: 9860959 [TBL] [Abstract][Full Text] [Related]
15. The reaction cycle of GroEL and GroES in chaperonin-assisted protein folding. Martin J; Mayhew M; Langer T; Hartl FU Nature; 1993 Nov; 366(6452):228-33. PubMed ID: 7901770 [TBL] [Abstract][Full Text] [Related]
16. Refolding of bovine mitochondrial rhodanese by chaperonins GroEL and GroES. Weber F; Hayer-Hartl M Methods Mol Biol; 2000; 140():117-26. PubMed ID: 11484478 [No Abstract] [Full Text] [Related]
17. Individual subunits of bacterial luciferase are molten globules and interact with molecular chaperones. Flynn GC; Beckers CJ; Baase WA; Dahlquist FW Proc Natl Acad Sci U S A; 1993 Nov; 90(22):10826-30. PubMed ID: 7902573 [TBL] [Abstract][Full Text] [Related]
18. Interactions between the GroE chaperonins and rhodanese. Multiple intermediates and release and rebinding. Smith KE; Fisher MT J Biol Chem; 1995 Sep; 270(37):21517-23. PubMed ID: 7665563 [TBL] [Abstract][Full Text] [Related]
19. Characterization of a functionally important mobile domain of GroES. Landry SJ; Zeilstra-Ryalls J; Fayet O; Georgopoulos C; Gierasch LM Nature; 1993 Jul; 364(6434):255-8. PubMed ID: 8100614 [TBL] [Abstract][Full Text] [Related]