These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

433 related articles for article (PubMed ID: 16773496)

  • 1. Hair cells--beyond the transducer.
    Housley GD; Marcotti W; Navaratnam D; Yamoah EN
    J Membr Biol; 2006; 209(2-3):89-118. PubMed ID: 16773496
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A biophysical model of the inner hair cell: the contribution of potassium currents to peripheral auditory compression.
    Lopez-Poveda EA; Eustaquio-Martín A
    J Assoc Res Otolaryngol; 2006 Sep; 7(3):218-35. PubMed ID: 16718614
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dominant-negative inhibition of M-like potassium conductances in hair cells of the mouse inner ear.
    Holt JR; Stauffer EA; Abraham D; Géléoc GS
    J Neurosci; 2007 Aug; 27(33):8940-51. PubMed ID: 17699675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A model for amplification of hair-bundle motion by cyclical binding of Ca2+ to mechanoelectrical-transduction channels.
    Choe Y; Magnasco MO; Hudspeth AJ
    Proc Natl Acad Sci U S A; 1998 Dec; 95(26):15321-6. PubMed ID: 9860967
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Limiting frequency of the cochlear amplifier based on electromotility of outer hair cells.
    Ospeck M; Dong XX; Iwasa KH
    Biophys J; 2003 Feb; 84(2 Pt 1):739-49. PubMed ID: 12547758
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spectrin βV adaptive mutations and changes in subcellular location correlate with emergence of hair cell electromotility in mammalians.
    Cortese M; Papal S; Pisciottano F; Elgoyhen AB; Hardelin JP; Petit C; Franchini LF; El-Amraoui A
    Proc Natl Acad Sci U S A; 2017 Feb; 114(8):2054-2059. PubMed ID: 28179572
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electromotility in outer hair cells: a supporting role for fast potassium conductance.
    Ospeck M; Dong XX; Fang J; Iwasa KH
    ORL J Otorhinolaryngol Relat Spec; 2006; 68(6):373-7. PubMed ID: 17065832
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression of a potassium current in inner hair cells during development of hearing in mice.
    Kros CJ; Ruppersberg JP; Rüsch A
    Nature; 1998 Jul; 394(6690):281-4. PubMed ID: 9685158
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reduced climbing and increased slipping adaptation in cochlear hair cells of mice with Myo7a mutations.
    Kros CJ; Marcotti W; van Netten SM; Self TJ; Libby RT; Brown SD; Richardson GP; Steel KP
    Nat Neurosci; 2002 Jan; 5(1):41-7. PubMed ID: 11753415
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Electrical response recording of cochlear hair cells in vivo].
    Wu W; Jiang S; Gu R
    Zhonghua Er Bi Yan Hou Ke Za Zhi; 1996; 31(1):20-3. PubMed ID: 9275397
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ionic currents and electromotility in inner ear hair cells from humans.
    Oghalai JS; Holt JR; Nakagawa T; Jung TM; Coker NJ; Jenkins HA; Eatock RA; Brownell WE
    J Neurophysiol; 1998 Apr; 79(4):2235-9. PubMed ID: 9535985
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Goldman-Hodgkin-Katz equation and graphical 'load-line' analysis of ionic flow through outer hair cells.
    Patuzzi R
    Hear Res; 1998 Nov; 125(1-2):71-97. PubMed ID: 9833963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Acetylsalicylic acid does not alter the mechanoelectrical transduction of mammalian outer hair cells in vitro].
    Preyer S; Meyer J
    HNO; 2006 Sep; 54(9):670-6. PubMed ID: 16528510
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ca2+-independent activation of BKCa channels at negative potentials in mammalian inner hair cells.
    Thurm H; Fakler B; Oliver D
    J Physiol; 2005 Nov; 569(Pt 1):137-51. PubMed ID: 16150795
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanoelectrical transduction assisted by Brownian motion: a role for noise in the auditory system.
    Jaramillo F; Wiesenfeld K
    Nat Neurosci; 1998 Sep; 1(5):384-8. PubMed ID: 10196528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling the active process of the cochlea: phase relations, amplification, and spontaneous oscillation.
    Markin VS; Hudspeth AJ
    Biophys J; 1995 Jul; 69(1):138-47. PubMed ID: 7669891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of electromotility in the cochlear outer hair cell.
    Frolenkov GI
    J Physiol; 2006 Oct; 576(Pt 1):43-8. PubMed ID: 16887876
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Age-related changes in auditory nerve-inner hair cell connections, hair cell numbers, auditory brain stem response and gap detection in UM-HET4 mice.
    Altschuler RA; Dolan DF; Halsey K; Kanicki A; Deng N; Martin C; Eberle J; Kohrman DC; Miller RA; Schacht J
    Neuroscience; 2015 Apr; 292():22-33. PubMed ID: 25665752
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two types of cochlear hair cells with two different modes of activation are better than one.
    Sohmer H
    J Basic Clin Physiol Pharmacol; 2012 Jan; 23(1):1-3. PubMed ID: 22865443
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mathematical model of outer hair cell regulation including ion transport and cell motility.
    O'Beirne GA; Patuzzi RB
    Hear Res; 2007 Dec; 234(1-2):29-51. PubMed ID: 17981412
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.