These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 1677412)

  • 1. The role of trehalose in the osmoadaptation of Escherichia coli NCIB 9484: interaction of trehalose, K+ and glutamate during osmoadaptation in continuous culture.
    Welsh DT; Reed RH; Herbert RA
    J Gen Microbiol; 1991 Apr; 137(4):745-50. PubMed ID: 1677412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transient accumulation of potassium glutamate and its replacement by trehalose during adaptation of growing cells of Escherichia coli K-12 to elevated sodium chloride concentrations.
    Dinnbier U; Limpinsel E; Schmid R; Bakker EP
    Arch Microbiol; 1988; 150(4):348-57. PubMed ID: 3060036
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Involvement of gamma-glutamyl peptides in osmoadaptation of Escherichia coli.
    McLaggan D; Logan TM; Lynn DG; Epstein W
    J Bacteriol; 1990 Jul; 172(7):3631-6. PubMed ID: 1972940
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Osmoregulation in Escherichia coli by accumulation of organic osmolytes: betaines, glutamic acid, and trehalose.
    Larsen PI; Sydnes LK; Landfald B; Strøm AR
    Arch Microbiol; 1987 Feb; 147(1):1-7. PubMed ID: 2883950
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accumulation of trehalose by Escherichia coli K-12 at high osmotic pressure depends on the presence of amber suppressors.
    Rod ML; Alam KY; Cunningham PR; Clark DP
    J Bacteriol; 1988 Aug; 170(8):3601-10. PubMed ID: 3042755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vapor pressure osmometry studies of osmolyte-protein interactions: implications for the action of osmoprotectants in vivo and for the interpretation of "osmotic stress" experiments in vitro.
    Courtenay ES; Capp MW; Anderson CF; Record MT
    Biochemistry; 2000 Apr; 39(15):4455-71. PubMed ID: 10757995
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interdependence of K+ and glutamate accumulation during osmotic adaptation of Escherichia coli.
    McLaggan D; Naprstek J; Buurman ET; Epstein W
    J Biol Chem; 1994 Jan; 269(3):1911-7. PubMed ID: 7904996
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transient, specific and extremely rapid release of osmolytes from growing cells of Escherichia coli K-12 exposed to hypoosmotic shock.
    Schleyer M; Schmid R; Bakker EP
    Arch Microbiol; 1993; 160(6):424-31. PubMed ID: 8297208
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Osmoadaptative responses in the rhizobia nodulating Acacia isolated from south-eastern Moroccan Sahara.
    Essendoubi M; Brhada F; Eljamali JE; Filali-Maltouf A; Bonnassie S; Georgeault S; Blanco C; Jebbar M
    Environ Microbiol; 2007 Mar; 9(3):603-11. PubMed ID: 17298361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Natural abundance 13C-nuclear magnetic resonance spectroscopic analysis of acyclic polyol and trehalose accumulation by several yeast species in response to salt stress.
    Meikle AJ; Chudek JA; Reed RH; Gadd GM
    FEMS Microbiol Lett; 1991 Aug; 66(2):163-7. PubMed ID: 1936945
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of trehalose in growth at high temperature of Salmonella enterica serovar Typhimurium.
    Cánovas D; Fletcher SA; Hayashi M; Csonka LN
    J Bacteriol; 2001 Jun; 183(11):3365-71. PubMed ID: 11344144
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Osmoadaptation in rhizobia: ectoine-induced salt tolerance.
    Talibart R; Jebbar M; Gouesbet G; Himdi-Kabbab S; Wróblewski H; Blanco C; Bernard T
    J Bacteriol; 1994 Sep; 176(17):5210-7. PubMed ID: 8071195
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Switching osmolyte strategies: response of Methanococcus thermolithotrophicus to changes in external NaCl.
    Martin DD; Ciulla RA; Robinson PM; Roberts MF
    Biochim Biophys Acta; 2001 Nov; 1524(1):1-10. PubMed ID: 11078952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative analysis of trehalose production by Debaryomyces hansenii and Saccharomyces cerevisiae under saline stress.
    González-Hernández JC; Jiménez-Estrada M; Peña A
    Extremophiles; 2005 Feb; 9(1):7-16. PubMed ID: 15338455
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional characterization of trehalose biosynthesis genes from E. coli: an osmolyte involved in stress tolerance.
    Joseph TC; Rajan LA; Thampuran N; James R
    Mol Biotechnol; 2010 Sep; 46(1):20-5. PubMed ID: 20217281
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combined effect of betaine and trehalose on osmotic tolerance of Escherichia coli in mineral salts medium.
    Miller EN; Ingram LO
    Biotechnol Lett; 2007 Feb; 29(2):213-7. PubMed ID: 17151959
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon storage in recombinant Escherichia coli during growth on glycerol and lactic acid.
    Weiner M; Tröndle J; Albermann C; Sprenger GA; Weuster-Botz D
    Biotechnol Bioeng; 2014 Dec; 111(12):2508-19. PubMed ID: 24902947
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments.
    Kempf B; Bremer E
    Arch Microbiol; 1998 Oct; 170(5):319-30. PubMed ID: 9818351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A 13C comparative nuclear magnetic resonance study of organic solute production and excretion by the yeasts Hansenula anomala and Saccharomyces cerevisiae in saline media.
    Bellinger Y; Larher F
    Can J Microbiol; 1988 May; 34(5):605-12. PubMed ID: 3061619
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 2-Sulfotrehalose, a novel osmolyte in haloalkaliphilic archaea.
    Desmarais D; Jablonski PE; Fedarko NS; Roberts MF
    J Bacteriol; 1997 May; 179(10):3146-53. PubMed ID: 9150208
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.