These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 16774123)

  • 1. Analysis of posttranslational modifications of proteins by tandem mass spectrometry.
    Larsen MR; Trelle MB; Thingholm TE; Jensen ON
    Biotechniques; 2006 Jun; 40(6):790-8. PubMed ID: 16774123
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strategy for comprehensive identification of post-translational modifications in cellular proteins, including low abundant modifications: application to glyceraldehyde-3-phosphate dehydrogenase.
    Seo J; Jeong J; Kim YM; Hwang N; Paek E; Lee KJ
    J Proteome Res; 2008 Feb; 7(2):587-602. PubMed ID: 18183946
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unbiased detection of posttranslational modifications using mass spectrometry.
    Savitski MF; Savitski MM
    Methods Mol Biol; 2010; 673():203-10. PubMed ID: 20835800
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Absolute quantitation of protein posttranslational modification isoform.
    Yang Z; Li N
    Methods Mol Biol; 2015; 1306():105-19. PubMed ID: 25930697
    [TBL] [Abstract][Full Text] [Related]  

  • 5. VEMS 3.0: algorithms and computational tools for tandem mass spectrometry based identification of post-translational modifications in proteins.
    Matthiesen R; Trelle MB; Højrup P; Bunkenborg J; Jensen ON
    J Proteome Res; 2005; 4(6):2338-47. PubMed ID: 16335983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Methods Employed in Mass Spectrometric Analysis of Posttranslational Modifications (PTMs) and Protein-Protein Interactions (PPIs).
    Yakubu RR; Nieves E; Weiss LM
    Adv Exp Med Biol; 2019; 1140():169-198. PubMed ID: 31347048
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantification of post-translationally modified peptides of bovine alpha-crystallin using tandem mass tags and electron transfer dissociation.
    Viner RI; Zhang T; Second T; Zabrouskov V
    J Proteomics; 2009 Jul; 72(5):874-85. PubMed ID: 19245863
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mass Spectrometry Analysis of Lysine Posttranslational Modifications of Tau Protein from Alzheimer's Disease Brain.
    Thomas SN; Yang AJ
    Methods Mol Biol; 2017; 1523():161-177. PubMed ID: 27975250
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unrestrictive identification of post-translational modifications through peptide mass spectrometry.
    Tanner S; Pevzner PA; Bafna V
    Nat Protoc; 2006; 1(1):67-72. PubMed ID: 17406213
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolution of a mass spectrometry-grade protease with PTM-directed specificity.
    Tran DT; Cavett VJ; Dang VQ; Torres HL; Paegel BM
    Proc Natl Acad Sci U S A; 2016 Dec; 113(51):14686-14691. PubMed ID: 27940920
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Priori Intrinsic PTM Size Parameters for Predicting the Ion Mobilities of Modified Peptides.
    Kaszycki JL; Shvartsburg AA
    J Am Soc Mass Spectrom; 2017 Feb; 28(2):294-302. PubMed ID: 27975328
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo posttranslational modifications of the high mobility group A1a proteins in breast cancer cells of differing metastatic potential.
    Edberg DD; Bruce JE; Siems WF; Reeves R
    Biochemistry; 2004 Sep; 43(36):11500-15. PubMed ID: 15350136
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation and identification of functional post-translational modification sites associated with drug binding and protein-protein interactions.
    Su MG; Weng JT; Hsu JB; Huang KY; Chi YH; Lee TY
    BMC Syst Biol; 2017 Dec; 11(Suppl 7):132. PubMed ID: 29322920
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Independent highly sensitive characterization of asparagine deamidation and aspartic acid isomerization by sheathless CZE-ESI-MS/MS.
    Gahoual R; Beck A; François YN; Leize-Wagner E
    J Mass Spectrom; 2016 Feb; 51(2):150-8. PubMed ID: 26889931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Emerging mass spectrometry-based technologies for analyses of chromatin changes: analysis of histones and histone modifications.
    Shah B; Kozlowski RL; Han J; Borchers CH
    Methods Mol Biol; 2011; 773():259-303. PubMed ID: 21898261
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An integrated approach to identifying chemically induced posttranslational modifications using comparative MALDI-MS and targeted HPLC-ESI-MS/MS.
    Person MD; Monks TJ; Lau SS
    Chem Res Toxicol; 2003 May; 16(5):598-608. PubMed ID: 12755589
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Posttranslational modification of indoleamine 2,3-dioxygenase.
    Fujigaki H; Seishima M; Saito K
    Anal Bioanal Chem; 2012 Jun; 403(7):1777-82. PubMed ID: 22460077
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of apolipoprotein-B-100 sequence coverage by liquid chromatography-tandem mass spectrometry for the future study of its posttranslational modifications.
    Delporte C; Van Antwerpen P; Zouaoui Boudjeltia K; Noyon C; Abts F; Métral F; Vanhamme L; Reyé F; Rousseau A; Vanhaeverbeek M; Ducobu J; Nève J
    Anal Biochem; 2011 Apr; 411(1):129-38. PubMed ID: 21129357
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison at the peptide level with post-translational modification consideration reveals more differences between two unenriched samples.
    Yin J; Shao C; Jia L; Gao Y
    Rapid Commun Mass Spectrom; 2014 Jun; 28(12):1364-70. PubMed ID: 24797947
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural characterization by tandem mass spectrometry of the posttranslational polyglycylation of tubulin.
    Vinh J; Langridge JI; Bré MH; Levilliers N; Redeker V; Loyaux D; Rossier J
    Biochemistry; 1999 Mar; 38(10):3133-9. PubMed ID: 10074368
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.