These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 16774308)

  • 41. Full-dimensional and reduced-dimensional calculations of initial state-selected reaction probabilities studying the H + CH4 → H2 + CH3 reaction on a neural network PES.
    Welsch R; Manthe U
    J Chem Phys; 2015 Feb; 142(6):064309. PubMed ID: 25681908
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Quantum wave-packet calculation of reaction probabilities, cross sections, and rate constants for Li + H2+ reaction.
    Gogtas F
    J Chem Phys; 2005 Dec; 123(24):244301. PubMed ID: 16396531
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Photochemistry of the water dimer: time-dependent quantum wave-packet description of the dynamics at the S1-S0 conical intersection.
    Chmura B; Lan Z; Rode MF; Sobolewski AL
    J Chem Phys; 2009 Oct; 131(13):134307. PubMed ID: 19814553
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A time-dependent quantum dynamical study of the H + HBr reaction.
    Fu B; Zhang DH
    J Phys Chem A; 2007 Sep; 111(38):9516-21. PubMed ID: 17696330
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Quantum wave packet dynamics of N(2D)+H2 reaction.
    Jayachander Rao B; Mahapatra S
    J Chem Phys; 2007 Dec; 127(24):244307. PubMed ID: 18163675
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Rotational excitations in para-H2+para-H2 collisions: full- and reduced-dimensional quantum wave packet studies comparing different potential energy surfaces.
    Otto F; Gatti F; Meyer HD
    J Chem Phys; 2008 Feb; 128(6):064305. PubMed ID: 18282036
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Time-dependent reactive scattering for the system H- + D2 <--> HD + D- and comparison with H- + H2 <--> H2 + H-.
    Morari C; Jaquet R
    J Phys Chem A; 2005 Apr; 109(15):3396-404. PubMed ID: 16833675
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Semiclassical nonadiabatic dynamics based on quantum trajectories for the O(3P,1D) + H2 system.
    Garashchuk S; Rassolov VA; Schatz GC
    J Chem Phys; 2006 Jun; 124(24):244307. PubMed ID: 16821977
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effect of Reagent Vibration and Rotation on the State-to-State Dynamics of the Hydrogen Exchange Reaction, H + H
    Goswami S; Sahoo J; Paul SK; Rao TR; Mahapatra S
    J Phys Chem A; 2020 Nov; 124(45):9343-9359. PubMed ID: 33124827
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A comparative study of the H + FO (v = 0, j = 0) --> (OH + F)/(HF + O) reaction from QM and QCT methods.
    Chu TS; Zhang H; Yuan SP; Fu AP; Si HZ; Tian FH; Duan YB
    J Phys Chem A; 2009 Apr; 113(15):3470-5. PubMed ID: 19317412
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Calculation of multiple initial state selected reaction probabilities from Chebyshev flux-flux correlation functions: influence of reactant internal excitations on H + H2O → OH + H2.
    Jiang B; Xie D; Guo H
    J Chem Phys; 2011 Aug; 135(8):084112. PubMed ID: 21895164
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A detailed quantum mechanical and quasiclassical trajectory study on the dynamics of the H+ + H2 --> H2 + H+ exchange reaction.
    González-Lezana T; Roncero O; Honvault P; Launay JM; Bulut N; Aoiz FJ; Bañares L
    J Chem Phys; 2006 Sep; 125(9):094314. PubMed ID: 16965087
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Communication: state-to-state quantum dynamics study of the OH + CO → H + CO2 reaction in full dimensions (J = 0).
    Liu S; Xu X; Zhang DH
    J Chem Phys; 2011 Oct; 135(14):141108. PubMed ID: 22010691
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Isotopic replacement in ionic systems: the 4He2+ + 3He-->3He 4He+ + 4He reaction.
    Bodo E; Lara M; Gianturco FA
    J Chem Phys; 2006 Jan; 124(4):044308. PubMed ID: 16460163
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Nine-dimensional quantum dynamics study of the H₂ + NH₂ → H + NH₃ reaction: a rigorous test of the sudden vector projection model.
    Song H; Li J; Yang M; Lu Y; Guo H
    Phys Chem Chem Phys; 2014 Sep; 16(33):17770-6. PubMed ID: 25030197
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Time dependent quantum dynamics study of the Ne + H2+(v=0-4)-->NeH+ + H proton transfer reaction.
    Mayneris J; Sierra JD; González M
    J Chem Phys; 2008 May; 128(19):194307. PubMed ID: 18500865
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Quantum dynamics study of vibrational excitation effects and energy requirement on reactivity for the O + CD4/CHD3 → OD/OH + CD3 reactions.
    Yan W; Meng F; Wang D
    J Phys Chem A; 2013 Nov; 117(47):12236-42. PubMed ID: 24152064
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Using quantum dynamics to study the effect of energy efficiency on the reactivity of the OH + DBr reaction.
    Wang Y; Shi S; Tan R; Yan W; Gao D; Wang D
    Phys Chem Chem Phys; 2021 Nov; 23(43):24669-24676. PubMed ID: 34704993
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Quantum control study of multilevel effect on ultrafast isotope-selective vibrational excitations.
    Kurosaki Y; Yokoyama K; Yokoyama A
    J Chem Phys; 2009 Oct; 131(14):144305. PubMed ID: 19831439
    [TBL] [Abstract][Full Text] [Related]  

  • 60. State-to-state quantum dynamical study of the N + OH --> NO + H reaction.
    Jorfi M; Honvault P
    J Phys Chem A; 2009 Mar; 113(11):2316-22. PubMed ID: 19281142
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.