These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 16774338)

  • 1. Absorption spectrum and assignment of the Chappuis band of ozone.
    Grebenshchikov SY; Schinke R; Qu ZW; Zhu H
    J Chem Phys; 2006 May; 124(20):204313. PubMed ID: 16774338
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New theoretical investigations of the photodissociation of ozone in the Hartley, Huggins, Chappuis, and Wulf bands.
    Grebenshchikov SY; Qu ZW; Zhu H; Schinke R
    Phys Chem Chem Phys; 2007 May; 9(17):2044-64. PubMed ID: 17464386
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The photodissociation of ozone in the Hartley band: a theoretical analysis.
    Qu ZW; Zhu H; Grebenshchikov SY; Schinke R
    J Chem Phys; 2005 Aug; 123(7):074305. PubMed ID: 16229568
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Huggins band of ozone: a theoretical analysis.
    Qu ZW; Zhu H; Grebenshchikov SY; Schinke R; Farantos SC
    J Chem Phys; 2004 Dec; 121(23):11731-45. PubMed ID: 15634138
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photodissociation of ozone in the Hartley band: Potential energy surfaces, nonadiabatic couplings, and singlet/triplet branching ratio.
    Schinke R; McBane GC
    J Chem Phys; 2010 Jan; 132(4):044305. PubMed ID: 20113031
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Huggins band of ozone: unambiguous electronic and vibrational assignment.
    Qu ZW; Zhu H; Tashiro M; Schinke R; Farantos SC
    J Chem Phys; 2004 Apr; 120(15):6811-4. PubMed ID: 15267579
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vibronic structure of the permanganate absorption spectrum from time-dependent density functional calculations.
    Neugebauer J; Jan Baerends E; Nooijen M
    J Phys Chem A; 2005 Feb; 109(6):1168-79. PubMed ID: 16833427
    [TBL] [Abstract][Full Text] [Related]  

  • 8. First ultraviolet absorption band of methane: an ab initio study.
    van Harrevelt R
    J Chem Phys; 2007 May; 126(20):204313. PubMed ID: 17552768
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The photodissociation of ozone: a quasi-classical approach to a quantum dynamics problem.
    Penfold TJ; Worth GA
    J Mol Graph Model; 2007 Oct; 26(3):613-21. PubMed ID: 17337348
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photodissociation of carbon dioxide in singlet valence electronic states. II. Five state absorption spectrum and vibronic assignment.
    Grebenshchikov SY
    J Chem Phys; 2013 Jun; 138(22):224107. PubMed ID: 23781783
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photodissociation of the water dimer: three-dimensional quantum dynamics studies on diabatic potential-energy surfaces.
    Valenzano L; van Hemert MC; Kroes GJ
    J Chem Phys; 2005 Jul; 123(3):34303. PubMed ID: 16080733
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Excited electronic states and nonadiabatic effects in contemporary chemical dynamics.
    Mahapatra S
    Acc Chem Res; 2009 Aug; 42(8):1004-15. PubMed ID: 19456094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Infrared spectrum of cyclic ozone: a theoretical investigation.
    Qu ZW; Zhu H; Schinke R
    J Chem Phys; 2005 Nov; 123(20):204324. PubMed ID: 16351273
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Huggins band of ozone: assignment of hot bands.
    Zhu H; Qu ZW; Grebenshchikov SY; Schinke R; Malicet J; Brion J; Daumont D
    J Chem Phys; 2005 Jan; 122(2):024310. PubMed ID: 15638589
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electronic nonadiabatic interactions and ultrafast internal conversion in phenylacetylene radical cation.
    Reddy VS; Mahapatra S
    J Chem Phys; 2009 Mar; 130(12):124303. PubMed ID: 19334826
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resonance spectrum and dissociation dynamics of ozone in the 3B2 electronically excited state: experiment and theory.
    Deppe SF; Wachsmuth U; Abel B; Bittererová M; Grebenshchikov SY; Siebert R; Schinke R
    J Chem Phys; 2004 Sep; 121(11):5191-200. PubMed ID: 15352812
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comment on "Theory of photodissociation of ozone in the Hartley continuum; effect of vibrational excitation and O(1D) atom velocity distribution" by E. Baloïtcha and G. G. Balint-Kurti, Phys. Chem. Chem. Phys., 2005, 7, 3829.
    Schinke R; Grebenshchikov SY
    Phys Chem Chem Phys; 2007 Aug; 9(30):4026-9. PubMed ID: 17646892
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The vibrational structure of the X 1A1 - A 1B1 and A 1B1 - B 1A1 band systems of GeH2/GeD2 based on global potential energy surfaces.
    Tokue I; Ebina S; Kanai M; Nanbu S
    J Chem Phys; 2007 Jan; 126(4):044313. PubMed ID: 17286476
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Signatures of a conical intersection in photofragment distributions and absorption spectra: photodissociation in the Hartley band of ozone.
    Picconi D; Grebenshchikov SY
    J Chem Phys; 2014 Aug; 141(7):074311. PubMed ID: 25149790
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adiabatic states derived from a spin-coupled diabatic transformation: semiclassical trajectory study of photodissociation of HBr and the construction of potential curves for LiBr+.
    Valero R; Truhlar DG; Jasper AW
    J Phys Chem A; 2008 Jun; 112(25):5756-69. PubMed ID: 18529041
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.