These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 16774356)

  • 1. Effects of electric fields on proton transport through water chains.
    Hassan SA; Hummer G; Lee YS
    J Chem Phys; 2006 May; 124(20):204510. PubMed ID: 16774356
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydroxide ion can move faster than an excess proton through one-dimensional water chains in hydrophobic narrow pores.
    Bankura A; Chandra A
    J Phys Chem B; 2012 Aug; 116(32):9744-57. PubMed ID: 22793519
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proton transfer through hydrogen bonds in two-dimensional water layers: a theoretical study based on ab initio and quantum-classical simulations.
    Bankura A; Chandra A
    J Chem Phys; 2015 Jan; 142(4):044701. PubMed ID: 25637997
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative proton transfer efficiencies of hydronium and hydroxide in aqueous solution: proton transfer vs Brownian motion.
    Uddin N; Kim J; Sung BJ; Choi TH; Choi CH; Kang H
    J Phys Chem B; 2014 Nov; 118(47):13671-8. PubMed ID: 25365595
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ab initio molecular dynamics simulations investigating proton transfer in perfluorosulfonic acid functionalized carbon nanotubes.
    Habenicht BF; Paddison SJ; Tuckerman ME
    Phys Chem Chem Phys; 2010 Aug; 12(31):8728-32. PubMed ID: 20556301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Concerted hydrogen-bond dynamics in the transport mechanism of the hydrated proton: a first-principles molecular dynamics study.
    Berkelbach TC; Lee HS; Tuckerman ME
    Phys Rev Lett; 2009 Dec; 103(23):238302. PubMed ID: 20366181
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nature of proton transport in a water-filled carbon nanotube and in liquid water.
    Chen J; Li XZ; Zhang Q; Michaelides A; Wang E
    Phys Chem Chem Phys; 2013 May; 15(17):6344-9. PubMed ID: 23518762
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Curvature induced L-defects in water conduction in carbon nanotubes.
    Zimmerli U; Gonnet PG; Walther JH; Koumoutsakos P
    Nano Lett; 2005 Jun; 5(6):1017-22. PubMed ID: 15943435
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydronium ion motion in nanometer 3-methyl-pentane films.
    Bell RC; Wu K; Iedema MJ; Cowin JP
    J Chem Phys; 2007 Jul; 127(2):024704. PubMed ID: 17640142
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Why are water-hydrophobic interfaces charged?
    Kudin KN; Car R
    J Am Chem Soc; 2008 Mar; 130(12):3915-9. PubMed ID: 18311970
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ab initio QM/MM dynamics of H3O+ in water.
    Intharathep P; Tongraar A; Sagarik K
    J Comput Chem; 2006 Nov; 27(14):1723-32. PubMed ID: 16903001
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of fast proton transport along one-dimensional water chains confined in carbon nanotubes.
    Cao Z; Peng Y; Yan T; Li S; Li A; Voth GA
    J Am Chem Soc; 2010 Aug; 132(33):11395-7. PubMed ID: 20669967
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the solvation and transport of the hydrated proton in the perfluorosulfonic acid membrane nafion.
    Petersen MK; Voth GA
    J Phys Chem B; 2006 Sep; 110(37):18594-600. PubMed ID: 16970488
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energetics and dynamics of proton transfer reactions along short water wires.
    Kaila VR; Hummer G
    Phys Chem Chem Phys; 2011 Aug; 13(29):13207-15. PubMed ID: 21701719
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface affinity of the hydronium ion: the effective fragment potential and umbrella sampling.
    Brorsen KR; Pruitt SR; Gordon MS
    J Phys Chem B; 2014 Dec; 118(49):14382-7. PubMed ID: 25418843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of charge transfer in the structure and dynamics of the hydrated proton.
    Swanson JM; Simons J
    J Phys Chem B; 2009 Apr; 113(15):5149-61. PubMed ID: 19309128
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure and dynamics of water inside endohedrally functionalized carbon nanotubes.
    Paul S; Abi TG; Taraphder S
    J Chem Phys; 2014 May; 140(18):184511. PubMed ID: 24832292
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ion permeation dynamics in carbon nanotubes.
    Liu H; Murad S; Jameson CJ
    J Chem Phys; 2006 Aug; 125(8):084713. PubMed ID: 16965045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Water alignment and proton conduction inside carbon nanotubes.
    Mann DJ; Halls MD
    Phys Rev Lett; 2003 May; 90(19):195503. PubMed ID: 12785955
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the recombination of hydronium and hydroxide ions in water.
    Hassanali A; Prakash MK; Eshet H; Parrinello M
    Proc Natl Acad Sci U S A; 2011 Dec; 108(51):20410-5. PubMed ID: 22143756
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.