These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
462 related articles for article (PubMed ID: 16774358)
1. Boundary slip and wetting properties of interfaces: correlation of the contact angle with the slip length. Voronov RS; Papavassiliou DV; Lee LL J Chem Phys; 2006 May; 124(20):204701. PubMed ID: 16774358 [TBL] [Abstract][Full Text] [Related]
2. Interfacial water at hydrophobic and hydrophilic surfaces: slip, viscosity, and diffusion. Sendner C; Horinek D; Bocquet L; Netz RR Langmuir; 2009 Sep; 25(18):10768-81. PubMed ID: 19591481 [TBL] [Abstract][Full Text] [Related]
3. Effect of surface roughness on rate-dependent slip in simple fluids. Priezjev NV J Chem Phys; 2007 Oct; 127(14):144708. PubMed ID: 17935424 [TBL] [Abstract][Full Text] [Related]
4. Rheological study of polymer flow past rough surfaces with slip boundary conditions. Niavarani A; Priezjev NV J Chem Phys; 2008 Oct; 129(14):144902. PubMed ID: 19045163 [TBL] [Abstract][Full Text] [Related]
5. Contact line and contact angle dynamics in superhydrophobic channels. Zhang J; Kwok DY Langmuir; 2006 May; 22(11):4998-5004. PubMed ID: 16700586 [TBL] [Abstract][Full Text] [Related]
6. Nonequilibrium molecular dynamics of the rheological and structural properties of linear and branched molecules. Simple shear and poiseuille flows; instabilities and slip. Castillo-Tejas J; Alvarado JF; González-Alatorre G; Luna-Bárcenas G; Sanchez IC; Macias-Salinas R; Manero O J Chem Phys; 2005 Aug; 123(5):054907. PubMed ID: 16108693 [TBL] [Abstract][Full Text] [Related]
7. Effect of nanometric-scale roughness on slip at the wall of simple fluids. Schmatko T; Hervet H; Léger L Langmuir; 2006 Aug; 22(16):6843-50. PubMed ID: 16863229 [TBL] [Abstract][Full Text] [Related]
8. Boundary slip study on hydrophilic, hydrophobic, and superhydrophobic surfaces with dynamic atomic force microscopy. Bhushan B; Wang Y; Maali A Langmuir; 2009 Jul; 25(14):8117-21. PubMed ID: 19402684 [TBL] [Abstract][Full Text] [Related]
9. Equilibrium calculations of viscosity and thermal conductivity across a solid-liquid interface using boundary fluctuations. Petravic J; Harrowell P J Chem Phys; 2008 May; 128(19):194710. PubMed ID: 18500889 [TBL] [Abstract][Full Text] [Related]
10. Water at polar and nonpolar solid walls. Sedlmeier F; Janecek J; Sendner C; Bocquet L; Netz RR; Horinek D Biointerphases; 2008 Sep; 3(3):FC23-39. PubMed ID: 20408691 [TBL] [Abstract][Full Text] [Related]
11. Molecular dynamics study of the influence of surfactant structure on surfactant-facilitated spreading of droplets on solid surfaces. Shen Y; Couzis A; Koplik J; Maldarelli C; Tomassone MS Langmuir; 2005 Dec; 21(26):12160-70. PubMed ID: 16342988 [TBL] [Abstract][Full Text] [Related]
13. Molecular simulation study of anisotropic wetting. Grzelak EM; Shen VK; Errington JR Langmuir; 2010 Jun; 26(11):8274-81. PubMed ID: 20218687 [TBL] [Abstract][Full Text] [Related]
14. Solid-liquid surface free energy of Lennard-Jones liquid on smooth and rough surfaces computed by molecular dynamics using the phantom-wall method. Leroy F; Müller-Plathe F J Chem Phys; 2010 Jul; 133(4):044110. PubMed ID: 20687636 [TBL] [Abstract][Full Text] [Related]
15. Dependence between velocity slip and temperature jump in shear flows. Sun J; Wang W; Wang HS J Chem Phys; 2013 Jun; 138(23):234703. PubMed ID: 23802972 [TBL] [Abstract][Full Text] [Related]
16. Dependence of the macroscopic contact angle on the liquid-solid interaction parameters and temperature. Berim GO; Ruckenstein E J Chem Phys; 2009 May; 130(18):184712. PubMed ID: 19449948 [TBL] [Abstract][Full Text] [Related]