These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 16774360)

  • 1. Raman spectroscopic investigation of carbon nanowalls.
    Ni ZH; Fan HM; Feng YP; Shen ZX; Yang BJ; Wu YH
    J Chem Phys; 2006 May; 124(20):204703. PubMed ID: 16774360
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of Plasma Treatment on Carbon Nanowalls Grown by Microwave Plasma Enhanced Chemical Vapor Deposition.
    Jung YH; Kang H; Choi WS; Joung YH; Choi YK
    J Nanosci Nanotechnol; 2016 May; 16(5):5291-4. PubMed ID: 27483917
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon nanowalls amplify the surface-enhanced Raman scattering from Ag nanoparticles.
    Rout CS; Kumar A; Fisher TS
    Nanotechnology; 2011 Sep; 22(39):395704. PubMed ID: 21896979
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characteristic Study of Boron Doped Carbon Nanowalls Films Deposited by Microwave Plasma Enhanced Chemical Vapor Deposition.
    Lu C; Dong Q; Tulugan K; Park YM; More MA; Kim J; Kim TG
    J Nanosci Nanotechnol; 2016 Feb; 16(2):1680-4. PubMed ID: 27433646
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of vertically aligned carbon nanofibers-carbon nanowalls by plasma-enhanced chemical vapor deposition.
    Okamoto A; Tanaka K; Yoshimura M; Ueda K; Ghosh P; Tanemura M
    J Nanosci Nanotechnol; 2013 Mar; 13(3):1956-60. PubMed ID: 23755628
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing graphene edges via Raman scattering.
    Gupta AK; Russin TJ; Gutiérrez HR; Eklund PC
    ACS Nano; 2009 Jan; 3(1):45-52. PubMed ID: 19206247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of strong electron and hole doping on the Raman intensity of chemical vapor-deposition graphene.
    Kalbac M; Reina-Cecco A; Farhat H; Kong J; Kavan L; Dresselhaus MS
    ACS Nano; 2010 Oct; 4(10):6055-63. PubMed ID: 20931995
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of metal-coated carbon nanowalls synthesized by microwave plasma enhanced chemical vapor deposition.
    Lee S; Choi WS; Yoo J; Lim DG; Kim HJ; Lee HJ; Hong B
    J Nanosci Nanotechnol; 2014 Dec; 14(12):9189-93. PubMed ID: 25971035
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Growth of carbon nanowalls on metal-coated substrates via microwave plasma enhanced chemical vapor deposition.
    Lee S; Choi WS
    J Nanosci Nanotechnol; 2014 Dec; 14(12):9174-7. PubMed ID: 25971032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of carbon concentration on the optical properties of nanocrystalline diamond films deposited by hot-filament chemical vapor deposition method.
    Wang L; Liu J; Ren L; Su Q; Shi W; Xia Y
    J Nanosci Nanotechnol; 2008 May; 8(5):2534-9. PubMed ID: 18572679
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studying disorder in graphite-based systems by Raman spectroscopy.
    Pimenta MA; Dresselhaus G; Dresselhaus MS; Cançado LG; Jorio A; Saito R
    Phys Chem Chem Phys; 2007 Mar; 9(11):1276-91. PubMed ID: 17347700
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aggregated enhanced Raman scattering in Fe(III)PPIX solutions: the effects of concentration and chloroquine on excitonic interactions.
    Webster GT; McNaughton D; Wood BR
    J Phys Chem B; 2009 May; 113(19):6910-6. PubMed ID: 19371036
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relative intensity correction of Raman spectrometers: NIST SRMs 2241 through 2243 for 785 nm, 532 nm, and 488 nm/514.5 nm excitation.
    Choquette SJ; Etz ES; Hurst WS; Blackburn DH; Leigh SD
    Appl Spectrosc; 2007 Feb; 61(2):117-29. PubMed ID: 17331302
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of carbon nanowalls from a single-source metal-organic precursor.
    Giese A; Schipporeit S; Buck V; Wöhrl N
    Beilstein J Nanotechnol; 2018; 9():1895-1905. PubMed ID: 30013883
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of Carbon Nanowalls (CNWs) Substrates on Soft Ionization of Low-Molecular-Weight Organic Compoundsin Surface-Assisted Laser Desorption/Ionization Mass Spectrometry (SALDI-MS).
    Sakai R; Ichikawa T; Kondo H; Ishikawa K; Shimizu N; Ohta T; Hiramatsu M; Hori M
    Nanomaterials (Basel); 2021 Jan; 11(2):. PubMed ID: 33498479
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strong overtones and combination bands in ultraviolet resonance Raman spectroscopy.
    Efremov EV; Ariese F; Mank AJ; Gooijer C
    Anal Chem; 2006 May; 78(9):3152-7. PubMed ID: 16643007
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical Properties of Oxygen Plasma-Treated Carbon Nanowalls Grown on Glass Substrates.
    Jung YH; Choi WS
    J Nanosci Nanotechnol; 2016 May; 16(5):5298-301. PubMed ID: 27483919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characteristics of surface-enhanced Raman scattering and surface-enhanced fluorescence using a single and a double layer gold nanostructure.
    Hossain MK; Huang GG; Kaneko T; Ozaki Y
    Phys Chem Chem Phys; 2009 Sep; 11(34):7484-90. PubMed ID: 19690723
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectroscopic characterization of carbon chains in nanostructured tetrahedral carbon films synthesized by femtosecond pulsed laser deposition.
    Hu A; Lu QB; Duley WW; Rybachuk M
    J Chem Phys; 2007 Apr; 126(15):154705. PubMed ID: 17461657
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.