These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 16774426)

  • 1. Performance of an irreversible quantum Carnot engine with spin 12.
    Wu F; Chen L; Wu S; Sun F; Wu C
    J Chem Phys; 2006 Jun; 124(21):214702. PubMed ID: 16774426
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance Analysis and Optimization for Irreversible Combined Carnot Heat Engine Working with Ideal Quantum Gases.
    Chen L; Meng Z; Ge Y; Wu F
    Entropy (Basel); 2021 Apr; 23(5):. PubMed ID: 33925622
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generalized model and optimum performance of an irreversible quantum Brayton engine with spin systems.
    Wu F; Chen L; Sun F; Wu C; Li Q
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jan; 73(1 Pt 2):016103. PubMed ID: 16486212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficiency at maximum power output of linear irreversible Carnot-like heat engines.
    Wang Y; Tu ZC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):011127. PubMed ID: 22400532
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficiency at maximum power of a quantum Otto cycle within finite-time or irreversible thermodynamics.
    Wu F; He J; Ma Y; Wang J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):062134. PubMed ID: 25615071
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance analysis of an irreversible quantum heat engine working with harmonic oscillators.
    Lin B; Chen J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Apr; 67(4 Pt 2):046105. PubMed ID: 12786434
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance of a multilevel quantum heat engine of an ideal N-particle Fermi system.
    Wang R; Wang J; He J; Ma Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 1):021133. PubMed ID: 23005748
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Finite-time performance of a quantum heat engine with a squeezed thermal bath.
    Wang J; He J; Ma Y
    Phys Rev E; 2019 Nov; 100(5-1):052126. PubMed ID: 31870038
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extracting work from a single heat bath via vanishing quantum coherence.
    Scully MO; Zubairy MS; Agarwal GS; Walther H
    Science; 2003 Feb; 299(5608):862-4. PubMed ID: 12511655
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance analysis of a two-state quantum heat engine working with a single-mode radiation field in a cavity.
    Wang J; He J; He X
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 1):041127. PubMed ID: 22181107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficiency at maximum power of a heat engine working with a two-level atomic system.
    Wang R; Wang J; He J; Ma Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):042119. PubMed ID: 23679385
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimal Power and Efficiency of Multi-Stage Endoreversible Quantum Carnot Heat Engine with Harmonic Oscillators at the Classical Limit.
    Meng Z; Chen L; Wu F
    Entropy (Basel); 2020 Apr; 22(4):. PubMed ID: 33286231
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficiency at maximum power output of an irreversible Carnot-like cycle with internally dissipative friction.
    Wang J; He J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 1):051112. PubMed ID: 23214743
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling and Performance Optimization of an Irreversible Two-Stage Combined Thermal Brownian Heat Engine.
    Qi C; Ding Z; Chen L; Ge Y; Feng H
    Entropy (Basel); 2021 Mar; 23(4):. PubMed ID: 33807398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficiency at maximum power of a quantum heat engine based on two coupled oscillators.
    Wang J; Ye Z; Lai Y; Li W; He J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):062134. PubMed ID: 26172688
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization Modeling of Irreversible Carnot Engine from the Perspective of Combining Finite Speed and Finite Time Analysis.
    Costea M; Petrescu S; Feidt M; Dobre C; Borcila B
    Entropy (Basel); 2021 Apr; 23(5):. PubMed ID: 33922290
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Finite-power performance of quantum heat engines in linear response.
    Liu Q; He J; Ma Y; Wang J
    Phys Rev E; 2019 Jul; 100(1-1):012105. PubMed ID: 31499858
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficiency at maximum power output of quantum heat engines under finite-time operation.
    Wang J; He J; Wu Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 1):031145. PubMed ID: 22587076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Achieving the classical Carnot efficiency in a strongly coupled quantum heat engine.
    Xu YY; Chen B; Liu J
    Phys Rev E; 2018 Feb; 97(2-1):022130. PubMed ID: 29548214
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantum mechanical bound for efficiency of quantum Otto heat engine.
    Park JM; Lee S; Chun HM; Noh JD
    Phys Rev E; 2019 Jul; 100(1-1):012148. PubMed ID: 31499873
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.