These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

354 related articles for article (PubMed ID: 16774443)

  • 1. Comment on "comment on 'simple reversible molecular dynamics algorithms for Nosé-Hoover chain dynamics' " [J. Chem. Phys. 110, 3623 (1999)].
    Yamamoto T
    J Chem Phys; 2006 Jun; 124(21):217101. PubMed ID: 16774443
    [No Abstract]   [Full Text] [Related]  

  • 2. Recovering the Crooks equation for dynamical systems in the isothermal-isobaric ensemble: a strategy based on the equations of motion.
    Chelli R; Marsili S; Barducci A; Procacci P
    J Chem Phys; 2007 Jan; 126(4):044502. PubMed ID: 17286482
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comment on "Comment on 'Constant temperature molecular dynamics simulations by means of a stochastic collision model. II. The harmonic oscillator' [J. Chem. Phys. 104, 3732 (1996)]" [J. Chem. Phys. 106, 1646 (1997)].
    Kast SM
    J Chem Phys; 2004 Mar; 120(10):4991-2. PubMed ID: 15267362
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crooks equation for steered molecular dynamics using a Nosé-Hoover thermostat.
    Procacci P; Marsili S; Barducci A; Signorini GF; Chelli R
    J Chem Phys; 2006 Oct; 125(16):164101. PubMed ID: 17092057
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comment on "free energy of solvation of simple ions: molecular dynamics study of solvation of Cl- and Na+ in the ice/water interface" [J. Chem. Phys. 123, 034706 (2005)].
    Feibelman PJ
    J Chem Phys; 2007 Jun; 126(23):237101; discussion 237102. PubMed ID: 17600447
    [No Abstract]   [Full Text] [Related]  

  • 6. Comment regarding "On the Crooks fluctuation theorem and the Jarzynski equality" [J. Chem. Phys. 129, 091101 (2008)] and "Nonequilibrium fluctuation-dissipation theorem of Brownian dynamics" [J. Chem. Phys. 129, 144113 (2008)].
    Crooks GE
    J Chem Phys; 2009 Mar; 130(10):107101; discussion 107102. PubMed ID: 19292558
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-Hamiltonian molecular dynamics implementation of the Gibbs ensemble method. I. Algorithm.
    Bratschi C; Huber H
    J Chem Phys; 2007 Apr; 126(16):164104. PubMed ID: 17477586
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular dynamics in the isothermal-isobaric ensemble: the requirement of a "shell" molecule. III. Discontinuous potentials.
    Uline MJ; Corti DS
    J Chem Phys; 2008 Jul; 129(1):014107. PubMed ID: 18624470
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comment on "Dynamics of water in a molecular sieve by quasielastic neutron scattering" [J. Chem. Phys. 122, 084505 (2005)].
    Dyer A
    J Chem Phys; 2006 Aug; 125(7):077101; author reply 077102. PubMed ID: 16942383
    [No Abstract]   [Full Text] [Related]  

  • 10. The canonical ensemble via symplectic integrators using Nosé and Nosé-Poincaré chains.
    Leimkuhler BJ; Sweet CR
    J Chem Phys; 2004 Jul; 121(1):108-16. PubMed ID: 15260527
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comment on "a nonequilibrium molecular-dynamics method for thermal conductivities based on thermal noise" [J. Chem. Phys. 122, 081103 (2005)].
    Terao T; Müller-Plathe F
    J Chem Phys; 2005 Dec; 123(21):217101. PubMed ID: 16356073
    [No Abstract]   [Full Text] [Related]  

  • 12. Comment on "Preserving the Boltzmann ensemble in replica-exchange molecular dynamics" [J. Chem. Phys. 129, 164112 (2008)].
    Fukuda I
    J Chem Phys; 2010 Mar; 132(12):127101. PubMed ID: 20370152
    [No Abstract]   [Full Text] [Related]  

  • 13. A proof of Jarzynski's nonequilibrium work theorem for dynamical systems that conserve the canonical distribution.
    Schöll-Paschinger E; Dellago C
    J Chem Phys; 2006 Aug; 125(5):054105. PubMed ID: 16942201
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comment on "Curvy-steps approach to constraint-free extended-Lagrangian ab initio molecular dynamics, using atom-centered basis functions: convergence toward Born-Oppenheimer trajectories" [J. Chem. Phys. 121, 11542 (2004)].
    Iyengar SS; Schlegel HB; Scuseria GE; Millam JM; Frisch MJ
    J Chem Phys; 2005 Jul; 123(2):27101; author reply 027102. PubMed ID: 16050773
    [No Abstract]   [Full Text] [Related]  

  • 15. Comment on "melting dynamics of superheated argon: nucleation and growth" [J. Chem. Phys. 126, 034505 (2007)].
    Wang LW
    J Chem Phys; 2007 May; 126(18):187101; discussion 187102. PubMed ID: 17508834
    [No Abstract]   [Full Text] [Related]  

  • 16. Comment on "denaturation of hen egg white lysozyme in electromagnetic fields: a molecular dynamics study" [J. Chem. Phys. 126, 091105 (2007)].
    Swicord ML; Sheppard AR; Balzano Q
    J Chem Phys; 2007 Sep; 127(11):117101; discussion 117102. PubMed ID: 17887885
    [No Abstract]   [Full Text] [Related]  

  • 17. Erratum: "Molecular dynamics simulations studies of nanoparticles in an isotropic liquid crystal matrix: Single particle behavior and pairwise interactions" [J. Chem. Phys. 124, 161101 (2006)] and "Molecular dynamics simulations of nanoparticles in dense isotropic nematogens: The role of matrix-induced long-range repulsive interactions" [J. Chem. Phys. 124, 184701 (2006)].
    Tian P; Smith GD; Glaser M
    J Chem Phys; 2008 Apr; 128(15):159901. PubMed ID: 18433288
    [No Abstract]   [Full Text] [Related]  

  • 18. Numerical examination of the extended phase-space volume-preserving integrator by the Nosé-Hoover molecular dynamics equations.
    Queyroy S; Nakamura H; Fukuda I
    J Comput Chem; 2009 Sep; 30(12):1799-815. PubMed ID: 19090566
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative molecular dynamics and Monte Carlo study of statistical properties for coarse-grained heteropolymers.
    Schluttig J; Bachmann M; Janke W
    J Comput Chem; 2008 Nov; 29(15):2603-12. PubMed ID: 18478584
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comment on "Theory of the photodissociation of ozone in the Hartley continuum: potential energy surfaces, conical intersections, and photodissociation dynamics" [J. Chem. Phys. 123, 014306 (2005)].
    Grebenshchikov SY; Schinke R
    J Chem Phys; 2007 Jun; 126(24):247101; author reply 247102. PubMed ID: 17614595
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 18.