BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

376 related articles for article (PubMed ID: 16774496)

  • 1. The effects of disruption of A kinase anchoring protein-protein kinase A association on protein kinase A signalling in neuroendocrine melanotroph cells of Xenopus laevis.
    Corstens GJ; van Boxtel R; van den Hurk MJ; Roubos EW; Jenks BG
    J Neuroendocrinol; 2006 Jul; 18(7):477-83. PubMed ID: 16774496
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Light modulates the melanophore response to alpha-MSH in Xenopus laevis: an analysis of the signal transduction crosstalk mechanisms involved.
    Isoldi MC; Provencio I; Castrucci AM
    Gen Comp Endocrinol; 2010 Jan; 165(1):104-10. PubMed ID: 19539625
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of A-kinase anchoring protein (AKAP) interaction with protein kinase A (PKA) regulatory subunits: PKA isoform specificity in AKAP binding.
    Herberg FW; Maleszka A; Eide T; Vossebein L; Tasken K
    J Mol Biol; 2000 Apr; 298(2):329-39. PubMed ID: 10764601
    [TBL] [Abstract][Full Text] [Related]  

  • 4. AKAP signalling complexes: focal points in space and time.
    Wong W; Scott JD
    Nat Rev Mol Cell Biol; 2004 Dec; 5(12):959-70. PubMed ID: 15573134
    [TBL] [Abstract][Full Text] [Related]  

  • 5. AKAPs competing peptide HT31 disrupts the inhibitory effect of PKA on RhoA activity.
    Wang Y; Chen Y; Chen M; Xu W
    Oncol Rep; 2006 Oct; 16(4):755-61. PubMed ID: 16969490
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of A-kinase-anchoring disruptors using a solution-based assay.
    Stokka AJ; Gesellchen F; Carlson CR; Scott JD; Herberg FW; Taskén K
    Biochem J; 2006 Dec; 400(3):493-9. PubMed ID: 16948636
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Peptides for disruption of PKA anchoring.
    Hundsrucker C; Rosenthal W; Klussmann E
    Biochem Soc Trans; 2006 Aug; 34(Pt 4):472-3. PubMed ID: 16856835
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distribution of regulatory subunits of protein kinase A and A kinase anchor proteins (AKAP 95, 150) in rat pinealocytes.
    Koch M; Korf HW
    Cell Tissue Res; 2002 Dec; 310(3):331-8. PubMed ID: 12457232
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isoform specific differences in binding of a dual-specificity A-kinase anchoring protein to type I and type II regulatory subunits of PKA.
    Burns LL; Canaves JM; Pennypacker JK; Blumenthal DK; Taylor SS
    Biochemistry; 2003 May; 42(19):5754-63. PubMed ID: 12741833
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel, isotype-specific sensors for protein kinase A subunit interaction based on bioluminescence resonance energy transfer (BRET).
    Prinz A; Diskar M; Erlbruch A; Herberg FW
    Cell Signal; 2006 Oct; 18(10):1616-25. PubMed ID: 16524697
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of PKA anchoring to A-kinase anchoring proteins impairs consolidation and facilitates extinction of contextual fear memories.
    Nijholt IM; Ostroveanu A; Scheper WA; Penke B; Luiten PG; Van der Zee EA; Eisel UL
    Neurobiol Learn Mem; 2008 Jul; 90(1):223-9. PubMed ID: 18442935
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alpha4 integrins are type I cAMP-dependent protein kinase-anchoring proteins.
    Lim CJ; Han J; Yousefi N; Ma Y; Amieux PS; McKnight GS; Taylor SS; Ginsberg MH
    Nat Cell Biol; 2007 Apr; 9(4):415-21. PubMed ID: 17369818
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PKA-dependent and PKA-independent pathways for cAMP-regulated exocytosis.
    Seino S; Shibasaki T
    Physiol Rev; 2005 Oct; 85(4):1303-42. PubMed ID: 16183914
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Compartmentalized cAMP signalling in regulated exocytic processes in non-neuronal cells.
    Szaszák M; Christian F; Rosenthal W; Klussmann E
    Cell Signal; 2008 Apr; 20(4):590-601. PubMed ID: 18061403
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of perch connexin35 hemi-channels by cyclic AMP requires a protein kinase A phosphorylation site.
    Mitropoulou G; Bruzzone R
    J Neurosci Res; 2003 Apr; 72(2):147-57. PubMed ID: 12671989
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatiotemporal control of cAMP signalling processes by anchored signalling complexes.
    Jarnaess E; Taskén K
    Biochem Soc Trans; 2007 Nov; 35(Pt 5):931-7. PubMed ID: 17956249
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A-kinase anchoring protein targeting of protein kinase A in the heart.
    Ruehr ML; Russell MA; Bond M
    J Mol Cell Cardiol; 2004 Sep; 37(3):653-65. PubMed ID: 15350838
    [TBL] [Abstract][Full Text] [Related]  

  • 18. cAMP increases Ca2+-dependent exocytosis through both PKA and Epac2 in mouse melanotrophs from pituitary tissue slices.
    Sedej S; Rose T; Rupnik M
    J Physiol; 2005 Sep; 567(Pt 3):799-813. PubMed ID: 15994184
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein kinase A anchoring to the myometrial plasma membrane is required for cyclic adenosine 3',5'-monophosphate regulation of phosphatidylinositide turnover.
    Dodge KL; Carr DW; Sanborn BM
    Endocrinology; 1999 Nov; 140(11):5165-70. PubMed ID: 10537145
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The where's and when's of kinase anchoring.
    Smith FD; Langeberg LK; Scott JD
    Trends Biochem Sci; 2006 Jun; 31(6):316-23. PubMed ID: 16690317
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.