These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 16774519)

  • 1. Comparison of I5M and 4Pi-microscopy.
    Bewersdorf J; Schmidt R; Hell SW
    J Microsc; 2006 May; 222(Pt 2):105-17. PubMed ID: 16774519
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coherent use of opposing lenses for axial resolution increase in fluorescence microscopy. I. Comparative study of concepts.
    Nagorni M; Hell SW
    J Opt Soc Am A Opt Image Sci Vis; 2001 Jan; 18(1):36-48. PubMed ID: 11152002
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Imaging of optically thick specimen using two-photon excitation microscopy.
    Gerritsen HC; De Grauw CJ
    Microsc Res Tech; 1999 Nov; 47(3):206-9. PubMed ID: 10544335
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fast 4D Microscopy.
    De Mey JR; Kessler P; Dompierre J; Cordelières FP; Dieterlen A; Vonesch JL; Sibarita JB
    Methods Cell Biol; 2008; 85():83-112. PubMed ID: 18155460
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D reconstruction of high-resolution STED microscope images.
    Punge A; Rizzoli SO; Jahn R; Wildanger JD; Meyer L; Schönle A; Kastrup L; Hell SW
    Microsc Res Tech; 2008 Sep; 71(9):644-50. PubMed ID: 18512740
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performances of high numerical aperture water and oil immersion objective in deep-tissue, multi-photon microscopic imaging of excised human skin.
    Dong CY; Yu B; Kaplan PD; So PT
    Microsc Res Tech; 2004 Jan; 63(1):81-6. PubMed ID: 14677137
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increasing the lateral resolution of 4Pi fluorescence microscopes.
    Sandeau N; Giovannini H
    J Opt Soc Am A Opt Image Sci Vis; 2006 May; 23(5):1089-95. PubMed ID: 16642186
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 4Pi microscopy of type A with 1-photon excitation in biological fluorescence imaging.
    Lang M; Müller T; Engelhardt J; Hell SW
    Opt Express; 2007 Mar; 15(5):2459-67. PubMed ID: 19532483
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Image contrast in X-ray reflection interface microscopy: comparison of data with model calculations and simulations.
    Fenter P; Park C; Kohli V; Zhang Z
    J Synchrotron Radiat; 2008 Nov; 15(Pt 6):558-71. PubMed ID: 18955761
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the complex three-dimensional amplitude point spread function of lenses and microscope objectives: theoretical aspects, simulations and measurements by digital holography.
    Marian A; Charrière F; Colomb T; Montfort F; Kühn J; Marquet P; Depeursinge C
    J Microsc; 2007 Feb; 225(Pt 2):156-69. PubMed ID: 17359250
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spherical nanosized focal spot unravels the interior of cells.
    Schmidt R; Wurm CA; Jakobs S; Engelhardt J; Egner A; Hell SW
    Nat Methods; 2008 Jun; 5(6):539-44. PubMed ID: 18488034
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phase-retrieved pupil functions in wide-field fluorescence microscopy.
    Hanser BM; Gustafsson MG; Agard DA; Sedat JW
    J Microsc; 2004 Oct; 216(Pt 1):32-48. PubMed ID: 15369481
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 4Pi-confocal microscopy of live cells.
    Bahlmann K; Jakobs S; Hell SW
    Ultramicroscopy; 2001 Apr; 87(3):155-64. PubMed ID: 11330502
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Off-axis sparse aperture imaging using phase optimization techniques for application in wide-area imaging systems.
    Mahalanobis A; Neifeld M; Bhagavatula VK; Haberfelde T; Brady D
    Appl Opt; 2009 Oct; 48(28):5212-24. PubMed ID: 19798359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative in vivo imaging of entire embryos with Digital Scanned Laser Light Sheet Fluorescence Microscopy.
    Keller PJ; Stelzer EH
    Curr Opin Neurobiol; 2008 Dec; 18(6):624-32. PubMed ID: 19375303
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An excitation wavelength-scanning spectral imaging system for preclinical imaging.
    Leavesley S; Jiang Y; Patsekin V; Rajwa B; Robinson JP
    Rev Sci Instrum; 2008 Feb; 79(2 Pt 1):023707. PubMed ID: 18315305
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescence microscopy with super-resolved optical sections.
    Egner A; Hell SW
    Trends Cell Biol; 2005 Apr; 15(4):207-15. PubMed ID: 15817377
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Saturated patterned excitation microscopy--a concept for optical resolution improvement.
    Heintzmann R; Jovin TM; Cremer C
    J Opt Soc Am A Opt Image Sci Vis; 2002 Aug; 19(8):1599-609. PubMed ID: 12152701
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quasi-spherical focal spot in two-photon scanning microscopy by three-ring apodization.
    Ibáñez-López C; Saavedra G; Plamann K; Boyer G; Martínez-Corral M
    Microsc Res Tech; 2005 May; 67(1):22-6. PubMed ID: 16025487
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial filtering nearly eliminates the side-lobes in single- and multi-photon 4pi-type-C super-resolution fluorescence microscopy.
    M K; Regmi R; Mondal PP
    Rev Sci Instrum; 2013 Sep; 84(9):093704. PubMed ID: 24089833
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.