These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 16774734)

  • 1. Reduction of nitric oxide in bacterial nitric oxide reductase--a theoretical model study.
    Blomberg LM; Blomberg MR; Siegbahn PE
    Biochim Biophys Acta; 2006 Apr; 1757(4):240-52. PubMed ID: 16774734
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A theoretical study on nitric oxide reductase activity in a ba(3)-type heme-copper oxidase.
    Blomberg LM; Blomberg MR; Siegbahn PE
    Biochim Biophys Acta; 2006 Jan; 1757(1):31-46. PubMed ID: 16375849
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical study of the reduction of nitric oxide in an A-type flavoprotein.
    Blomberg LM; Blomberg MR; Siegbahn PE
    J Biol Inorg Chem; 2007 Jan; 12(1):79-89. PubMed ID: 16957917
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical behaviour of bacterial nitric oxide reductase-evidence of low redox potential non-heme Fe(B) gives new perspectives on the catalytic mechanism.
    Cordas CM; Duarte AG; Moura JJ; Moura I
    Biochim Biophys Acta; 2013 Mar; 1827(3):233-8. PubMed ID: 23142527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bacterial nitric oxide reductase: a mechanism revisited by an ONIOM (DFT:MM) study.
    Attia AA; Silaghi-Dumitrescu R
    J Mol Model; 2015 May; 21(5):130. PubMed ID: 25920393
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Can Reduction of NO to N
    Blomberg MR
    Biochemistry; 2017 Jan; 56(1):120-131. PubMed ID: 27959492
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redox-dependent open and closed forms of the active site of the bacterial respiratory nitric-oxide reductase revealed by cyanide binding studies.
    Grönberg KL; Watmough NJ; Thomson AJ; Richardson DJ; Field SJ
    J Biol Chem; 2004 Apr; 279(17):17120-5. PubMed ID: 14766741
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heme/non-heme diiron(II) complexes and O2, CO, and NO adducts as reduced and substrate-bound models for the active site of bacterial nitric oxide reductase.
    Wasser IM; Huang HW; Moënne-Loccoz P; Karlin KD
    J Am Chem Soc; 2005 Mar; 127(10):3310-20. PubMed ID: 15755147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectral properties of bacterial nitric-oxide reductase: resolution of pH-dependent forms of the active site heme b3.
    Field SJ; Prior L; Roldan MD; Cheesman MR; Thomson AJ; Spiro S; Butt JN; Watmough NJ; Richardson DJ
    J Biol Chem; 2002 Jun; 277(23):20146-50. PubMed ID: 11901154
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A theoretical study of myoglobin working as a nitric oxide scavenger.
    Blomberg LM; Blomberg MR; Siegbahn PE
    J Biol Inorg Chem; 2004 Dec; 9(8):923-35. PubMed ID: 15452775
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of the bridged hyponitrite complex {[Fe(OEP)](2)(μ-N(2)O(2))}: reactivity of hyponitrite complexes and biological relevance.
    Berto TC; Xu N; Lee SR; McNeil AJ; Alp EE; Zhao J; Richter-Addo GB; Lehnert N
    Inorg Chem; 2014 Jul; 53(13):6398-414. PubMed ID: 24971721
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism for N₂O generation in bacterial nitric oxide reductase: a quantum chemical study.
    Blomberg MR; Siegbahn PE
    Biochemistry; 2012 Jun; 51(25):5173-86. PubMed ID: 22680334
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nitric oxide activation and reduction by heme-copper oxidoreductases and nitric oxide reductase.
    Pinakoulaki E; Varotsis C
    J Inorg Biochem; 2008; 102(5-6):1277-87. PubMed ID: 18334269
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The nitric oxide reductase mechanism of a flavo-diiron protein: identification of active-site intermediates and products.
    Caranto JD; Weitz A; Hendrich MP; Kurtz DM
    J Am Chem Soc; 2014 Jun; 136(22):7981-92. PubMed ID: 24828196
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of N-N Bond Formation by Transition Metal-Nitrosyl Complexes: Modeling Flavodiiron Nitric Oxide Reductases.
    Van Stappen C; Lehnert N
    Inorg Chem; 2018 Apr; 57(8):4252-4269. PubMed ID: 29608298
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms for enzymatic reduction of nitric oxide to nitrous oxide - A comparison between nitric oxide reductase and cytochrome c oxidase.
    Blomberg MRA; Ädelroth P
    Biochim Biophys Acta Bioenerg; 2018 Nov; 1859(11):1223-1234. PubMed ID: 30248312
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diverse NO reduction by Halomonas halodenitrificans nitric oxide reductase.
    Sakurai T; Nakashima S; Kataoka K; Seo D; Sakurai N
    Biochem Biophys Res Commun; 2005 Jul; 333(2):483-7. PubMed ID: 15950940
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A functional nitric oxide reductase model.
    Collman JP; Yang Y; Dey A; Decréau RA; Ghosh S; Ohta T; Solomon EI
    Proc Natl Acad Sci U S A; 2008 Oct; 105(41):15660-5. PubMed ID: 18838684
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural and electronic characterization of non-heme Fe(II)-nitrosyls as biomimetic models of the Fe(B) center of bacterial nitric oxide reductase.
    Berto TC; Hoffman MB; Murata Y; Landenberger KB; Alp EE; Zhao J; Lehnert N
    J Am Chem Soc; 2011 Oct; 133(42):16714-7. PubMed ID: 21630658
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical study of the water oxidation mechanism with non-heme Fe(Pytacn) iron complexes. Evidence that the Fe(IV)(O)(Pytacn) species cannot react with the water molecule to form the O-O bond.
    Acuña-Parés F; Costas M; Luis JM; Lloret-Fillol J
    Inorg Chem; 2014 Jun; 53(11):5474-85. PubMed ID: 24816178
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.