BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

493 related articles for article (PubMed ID: 16774853)

  • 1. Coordination of microtubules and the actin cytoskeleton is important in osteoclast function, but calcitonin disrupts sealing zones without affecting microtubule networks.
    Okumura S; Mizoguchi T; Sato N; Yamaki M; Kobayashi Y; Yamauchi H; Ozawa H; Udagawa N; Takahashi N
    Bone; 2006 Oct; 39(4):684-93. PubMed ID: 16774853
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Organization of cytoskeletal F-actin, G-actin, and gelsolin in the adhesion structures in cultured osteoclast.
    Akisaka T; Yoshida H; Inoue S; Shimizu K
    J Bone Miner Res; 2001 Jul; 16(7):1248-55. PubMed ID: 11450700
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical and physical properties of the extracellular matrix are required for the actin ring formation in osteoclasts.
    Nakamura I; Takahashi N; Sasaki T; Jimi E; Kurokawa T; Suda T
    J Bone Miner Res; 1996 Dec; 11(12):1873-9. PubMed ID: 8970888
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polarized osteoclasts put marks of tartrate-resistant acid phosphatase on dentin slices--a simple method for identifying polarized osteoclasts.
    Nakayama T; Mizoguchi T; Uehara S; Yamashita T; Kawahara I; Kobayashi Y; Moriyama Y; Kurihara S; Sahara N; Ozawa H; Udagawa N; Takahashi N
    Bone; 2011 Dec; 49(6):1331-9. PubMed ID: 21983021
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetics of the osteoclast cytoskeleton during the resorption cycle in vitro.
    Lakkakorpi PT; Väänänen HK
    J Bone Miner Res; 1991 Aug; 6(8):817-26. PubMed ID: 1664645
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cytoskeletal changes in osteoclasts during the resorption cycle.
    Lakkakorpi PT; Väänänen HK
    Microsc Res Tech; 1996 Feb; 33(2):171-81. PubMed ID: 8845516
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Actin binding activity of subunit B of vacuolar H+-ATPase is involved in its targeting to ruffled membranes of osteoclasts.
    Zuo J; Jiang J; Chen SH; Vergara S; Gong Y; Xue J; Huang H; Kaku M; Holliday LS
    J Bone Miner Res; 2006 May; 21(5):714-21. PubMed ID: 16734386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of calcitonin on the function of human osteoclast-like cells formed from CD14-positive monocytes.
    Yamamoto Y; Yamamoto Y; Udagawa N; Okumura S; Mizoguchi T; Take I; Yamauchi H; Yamauchi H; Noguchi T; Takahashi N
    Cell Mol Biol (Noisy-le-grand); 2006 May; 52(3):25-31. PubMed ID: 17535751
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Specific biological functions of vacuolar-type H(+)-ATPase and lysosomal cysteine proteinase, cathepsin K, in osteoclasts.
    Sahara T; Itoh K; Debari K; Sasaki T
    Anat Rec A Discov Mol Cell Evol Biol; 2003 Feb; 270(2):152-61. PubMed ID: 12524690
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteomic identification of the TRAF6 regulation of vacuolar ATPase for osteoclast function.
    Ryu J; Kim H; Lee SK; Chang EJ; Kim HJ; Kim HH
    Proteomics; 2005 Nov; 5(16):4152-60. PubMed ID: 16196101
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphatidylinositol-3 kinase is involved in ruffled border formation in osteoclasts.
    Nakamura I; Sasaki T; Tanaka S; Takahashi N; Jimi E; Kurokawa T; Kita Y; Ihara S; Suda T; Fukui Y
    J Cell Physiol; 1997 Aug; 172(2):230-9. PubMed ID: 9258344
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The ruffled border and attachment regions of the apposing membrane of resorbing osteoclasts as visualized from the cytoplasmic face of the membrane.
    Akisaka T; Yoshida H; Suzuki R
    J Electron Microsc (Tokyo); 2006 Apr; 55(2):53-61. PubMed ID: 16775216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Involvement of vacuolar H+ -ATPase in incorporation of risedronate into osteoclasts.
    Takami M; Suda K; Sahara T; Itoh K; Nagai K; Sasaki T; Udagawa N; Takahashi N
    Bone; 2003 Apr; 32(4):341-9. PubMed ID: 12689676
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calcitonin-induced changes in the cytoskeleton are mediated by a signal pathway associated with protein kinase A in osteoclasts.
    Suzuki H; Nakamura I; Takahashi N; Ikuhara T; Matsuzaki K; Isogai Y; Hori M; Suda T
    Endocrinology; 1996 Nov; 137(11):4685-90. PubMed ID: 8895334
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interstitial collagenase activity stimulates the formation of actin rings and ruffled membranes in mouse marrow osteoclasts.
    Holliday LS; Welgus HG; Hanna J; Lee BS; Lu M; Jeffrey JJ; Gluck SL
    Calcif Tissue Int; 2003 Mar; 72(3):206-14. PubMed ID: 12522662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tropomyosin isoforms localize to distinct microfilament populations in osteoclasts.
    McMichael BK; Kotadiya P; Singh T; Holliday LS; Lee BS
    Bone; 2006 Oct; 39(4):694-705. PubMed ID: 16765662
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atp6v1c1 is an essential component of the osteoclast proton pump and in F-actin ring formation in osteoclasts.
    Feng S; Deng L; Chen W; Shao J; Xu G; Li YP
    Biochem J; 2009 Jan; 417(1):195-203. PubMed ID: 18657050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The bisphosphonate tiludronate is a potent inhibitor of the osteoclast vacuolar H(+)-ATPase.
    David P; Nguyen H; Barbier A; Baron R
    J Bone Miner Res; 1996 Oct; 11(10):1498-507. PubMed ID: 8889850
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent advances in the ultrastructural assessment of osteoclastic resorptive functions.
    Sasaki T
    Microsc Res Tech; 1996 Feb; 33(2):182-91. PubMed ID: 8845517
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction between vacuolar H(+)-ATPase and microfilaments during osteoclast activation.
    Lee BS; Gluck SL; Holliday LS
    J Biol Chem; 1999 Oct; 274(41):29164-71. PubMed ID: 10506172
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.