These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 16774859)

  • 1. When nanoparticles get in the way: impact of projected area on in vivo and in vitro macrophage function.
    Moss OR; Wong VA
    Inhal Toxicol; 2006 Sep; 18(10):711-6. PubMed ID: 16774859
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Small-sized titanium dioxide nanoparticles mediate immune toxicity in rat pulmonary alveolar macrophages in vivo.
    Liu R; Zhang X; Pu Y; Yin L; Li Y; Zhang X; Liang G; Li X; Zhang J
    J Nanosci Nanotechnol; 2010 Aug; 10(8):5161-9. PubMed ID: 21125865
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhalation of high concentrations of low toxicity dusts in rats results in impaired pulmonary clearance mechanisms and persistent inflammation.
    Warheit DB; Hansen JF; Yuen IS; Kelly DP; Snajdr SI; Hartsky MA
    Toxicol Appl Pharmacol; 1997 Jul; 145(1):10-22. PubMed ID: 9221819
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Significance of particle parameters in the evaluation of exposure-dose-response relationships of inhaled particles.
    Oberdorster G
    Inhal Toxicol; 1996; 8 Suppl():73-89. PubMed ID: 11542496
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal degradation events as health hazards: particle vs gas phase effects, mechanistic studies with particles.
    Oberdörster G; Ferin J; Finkelstein J; Soderholm S
    Acta Astronaut; 1992; 27():251-6. PubMed ID: 11537569
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correlation between particle size, in vivo particle persistence, and lung injury.
    Oberdörster G; Ferin J; Lehnert BE
    Environ Health Perspect; 1994 Oct; 102 Suppl 5(Suppl 5):173-9. PubMed ID: 7882925
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessing toxicity of fine and nanoparticles: comparing in vitro measurements to in vivo pulmonary toxicity profiles.
    Sayes CM; Reed KL; Warheit DB
    Toxicol Sci; 2007 May; 97(1):163-80. PubMed ID: 17301066
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The immune toxicity of titanium dioxide on primary pulmonary alveolar macrophages relies on their surface area and crystal structure.
    Liu R; Yin LH; Pu YP; Li YH; Zhang XQ; Liang GY; Li XB; Zhang J; Li YF; Zhang XY
    J Nanosci Nanotechnol; 2010 Dec; 10(12):8491-9. PubMed ID: 21121358
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contrasting macrophage activation by fine and ultrafine titanium dioxide particles is associated with different uptake mechanisms.
    Scherbart AM; Langer J; Bushmelev A; van Berlo D; Haberzettl P; van Schooten FJ; Schmidt AM; Rose CR; Schins RP; Albrecht C
    Part Fibre Toxicol; 2011 Oct; 8():31. PubMed ID: 21995556
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of macrophages in the clearance of inhaled ultrafine titanium dioxide particles.
    Geiser M; Casaulta M; Kupferschmid B; Schulz H; Semmler-Behnke M; Kreyling W
    Am J Respir Cell Mol Biol; 2008 Mar; 38(3):371-6. PubMed ID: 17947511
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential bioreactivity of neutral, cationic and anionic polystyrene nanoparticles with cells from the human alveolar compartment: robust response of alveolar type 1 epithelial cells.
    Ruenraroengsak P; Tetley TD
    Part Fibre Toxicol; 2015 Jul; 12():19. PubMed ID: 26133975
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Investigation of the effect of titanium dioxide nanorods on the lungs in a subacute rat model].
    Horváth T; Papp A; Kiricsi M; Igaz N; Trenka V; Kozma G; Tiszlavicz L; Rázga Z; Vezér T
    Orv Hetil; 2019 Jan; 160(2):57-66. PubMed ID: 30616368
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A mechanistic review of particle overload by titanium dioxide.
    Kawasaki H
    Inhal Toxicol; 2017; 29(12-14):530-540. PubMed ID: 29458306
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impairment of alveolar macrophage phagocytosis by ultrafine particles.
    Renwick LC; Donaldson K; Clouter A
    Toxicol Appl Pharmacol; 2001 Apr; 172(2):119-27. PubMed ID: 11298498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical and biological oxidative effects of carbon black nanoparticles.
    Koike E; Kobayashi T
    Chemosphere; 2006 Nov; 65(6):946-51. PubMed ID: 16765414
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pulmonary instillation studies with nanoscale TiO2 rods and dots in rats: toxicity is not dependent upon particle size and surface area.
    Warheit DB; Webb TR; Sayes CM; Colvin VL; Reed KL
    Toxicol Sci; 2006 May; 91(1):227-36. PubMed ID: 16495353
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increased inflammation and altered macrophage chemotactic responses caused by two ultrafine particle types.
    Renwick LC; Brown D; Clouter A; Donaldson K
    Occup Environ Med; 2004 May; 61(5):442-7. PubMed ID: 15090666
    [TBL] [Abstract][Full Text] [Related]  

  • 18. What is the impact of surface modifications and particle size on commercial titanium dioxide particle samples? - A review of in vivo pulmonary and oral toxicity studies - Revised 11-6-2018.
    Warheit DB; Brown SC
    Toxicol Lett; 2019 Mar; 302():42-59. PubMed ID: 30468858
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acute pulmonary effects of ultrafine particles in rats and mice.
    Oberdörster G; Finkelstein JN; Johnston C; Gelein R; Cox C; Baggs R; Elder AC
    Res Rep Health Eff Inst; 2000 Aug; (96):5-74; disc. 75-86. PubMed ID: 11205815
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lung macrophage uptake of unopsonized environmental particulates. Role of scavenger-type receptors.
    Kobzik L
    J Immunol; 1995 Jul; 155(1):367-76. PubMed ID: 7541421
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.