These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 16774868)

  • 1. Application of magnetic resonance (MR) imaging for the development and validation of computational fluid dynamic (CFD) models of the rat respiratory system.
    Minard KR; Einstein DR; Jacob RE; Kabilan S; Kuprat AP; Timchalk CA; Trease LL; Corley RA
    Inhal Toxicol; 2006 Sep; 18(10):787-94. PubMed ID: 16774868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro validation of computational fluid dynamic simulation in human proximal airways with hyperpolarized 3He magnetic resonance phase-contrast velocimetry.
    de Rochefort L; Vial L; Fodil R; Maître X; Louis B; Isabey D; Caillibotte G; Thiriet M; Bittoun J; Durand E; Sbirlea-Apiou G
    J Appl Physiol (1985); 2007 May; 102(5):2012-23. PubMed ID: 17289906
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Challenges in validating CFD-derived inhaled aerosol deposition predictions.
    Oldham MJ
    Inhal Toxicol; 2006 Sep; 18(10):781-6. PubMed ID: 16774867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetic resonance imaging and computational fluid dynamics (CFD) simulations of rabbit nasal airflows for the development of hybrid CFD/PBPK models.
    Corley RA; Minard KR; Kabilan S; Einstein DR; Kuprat AP; Harkema JR; Kimbell JS; Gargas ML; Kinzell JH
    Inhal Toxicol; 2009 May; 21(6):512-8. PubMed ID: 19519151
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of computational fluid dynamics in respiratory medicine.
    Fernández Tena A; Casan Clarà P
    Arch Bronconeumol; 2015 Jun; 51(6):293-8. PubMed ID: 25618456
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Steady Flow in a Patient-Averaged Inferior Vena Cava-Part II: Computational Fluid Dynamics Verification and Validation.
    Craven BA; Aycock KI; Manning KB
    Cardiovasc Eng Technol; 2018 Dec; 9(4):654-673. PubMed ID: 30446978
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutual enhancements of CFD modeling and experimental data: a case study of 1-mum particle deposition in a branching airway model.
    Longest PW; Oldham MJ
    Inhal Toxicol; 2006 Sep; 18(10):761-71. PubMed ID: 16774865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional computational fluid dynamics simulations of particle deposition in the tracheobronchial tree.
    Isaacs KK; Schlesinger RB; Martonen TB
    J Aerosol Med; 2006; 19(3):344-52. PubMed ID: 17034309
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dosimetry modeling of inhaled formaldehyde: the human respiratory tract.
    Overton JH; Kimbell JS; Miller FJ
    Toxicol Sci; 2001 Nov; 64(1):122-34. PubMed ID: 11606808
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental measurements and computational predictions of regional particle deposition in a sectional nasal model.
    Schroeter JD; Tewksbury EW; Wong BA; Kimbell JS
    J Aerosol Med Pulm Drug Deliv; 2015 Feb; 28(1):20-9. PubMed ID: 24580111
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human respiratory tract cancer risks of inhaled formaldehyde: dose-response predictions derived from biologically-motivated computational modeling of a combined rodent and human dataset.
    Conolly RB; Kimbell JS; Janszen D; Schlosser PM; Kalisak D; Preston J; Miller FJ
    Toxicol Sci; 2004 Nov; 82(1):279-96. PubMed ID: 15254341
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and verification of a high-fidelity computational fluid dynamics model of canine nasal airflow.
    Craven BA; Paterson EG; Settles GS; Lawson MJ
    J Biomech Eng; 2009 Sep; 131(9):091002. PubMed ID: 19725691
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flow visualization through particle image velocimetry in realistic model of rhesus monkey's upper airway.
    Kim JW; Phuong NL; Aramaki SI; Ito K
    Respir Physiol Neurobiol; 2018 May; 251():16-27. PubMed ID: 29438809
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional computer modeling of the human upper respiratory tract.
    Martonen TB; Zhang Z; Yu G; Musante CJ
    Cell Biochem Biophys; 2001; 35(3):255-61. PubMed ID: 11894845
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study of the variability in upper and lower airway morphology in Sprague-Dawley rats using modern micro-CT scan-based segmentation techniques.
    De Backer JW; Vos WG; Burnell P; Verhulst SL; Salmon P; De Clerck N; De Backer W
    Anat Rec (Hoboken); 2009 May; 292(5):720-7. PubMed ID: 19322825
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics of oropharyngeal aerosol transport and deposition with the realistic flow pattern.
    Sosnowski TR; Moskal A; Gradoń L
    Inhal Toxicol; 2006 Sep; 18(10):773-80. PubMed ID: 16774866
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensitivity of nasal airflow variables computed via computational fluid dynamics to the computed tomography segmentation threshold.
    Cherobin GB; Voegels RL; Gebrim EMMS; Garcia GJM
    PLoS One; 2018; 13(11):e0207178. PubMed ID: 30444909
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative computational modeling of airflows and vapor dosimetry in the respiratory tracts of rat, monkey, and human.
    Corley RA; Kabilan S; Kuprat AP; Carson JP; Minard KR; Jacob RE; Timchalk C; Glenny R; Pipavath S; Cox T; Wallis CD; Larson RF; Fanucchi MV; Postlethwait EM; Einstein DR
    Toxicol Sci; 2012 Aug; 128(2):500-16. PubMed ID: 22584687
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A hybrid computational fluid dynamics and physiologically based pharmacokinetic model for comparison of predicted tissue concentrations of acrylic acid and other vapors in the rat and human nasal cavities following inhalation exposure.
    Frederick CB; Gentry PR; Bush ML; Lomax LG; Black KA; Finch L; Kimbell JS; Morgan KT; Subramaniam RP; Morris JB; Ultman JS
    Inhal Toxicol; 2001 May; 13(5):359-76. PubMed ID: 11295868
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An automated self-similarity analysis of the pulmonary tree of the Sprague-Dawley rat.
    Einstein DR; Neradilak B; Pollisar N; Minard KR; Wallis C; Fanucchi M; Carson JP; Kuprat AP; Kabilan S; Jacob RE; Corley RA
    Anat Rec (Hoboken); 2008 Dec; 291(12):1628-48. PubMed ID: 18951511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.